

 Light Detection And Ranging Active form of remote sensing: information is obtained from a signal which is so from a transmitter, reflected by a target, and detected by a receiver back at the 					
<u>Active</u> form of remote sensing: information is obtained from a signal which is so from a transmitter, reflected by a target, and detected by a receiver back at the					
 <u>Active</u> form of remote sensing: information is obtained from a signal which is sent from a transmitter, reflected by a target, and detected by a receiver back at the source. 					
Airborne and Space Lidar Systems. Most are currently airborne.					
 3 types of information can be obtained: a) Range to target (Topographic Lidar, or Laser Altimetry))				
b) Chemical properties of target (Differential Absorption Lidar) c) Velocity of target (Doppler Lidar)					
 Focus on Laser Altimetry. Most active area today. 					

Lidar History
 60s and 70s - First laser remote sensing instruments (lunar laser ranging, satellite laser ranging, oceanographic and atmospheric research)
 80s - First laser altimetry systems (NASA Atmospheric and Oceanographic Lidar (AOL) and Airborne Topographic Mapper (ATM))
 1995 - First commercial airborne Lidar systems developed.
 Last 10 years - Significant development of commercial and non-commercial systems 1994 - SHOALS (US Army Corps of Engineers) 1996 - Mars Orbiter Laser Altimer (NASA MOLA-2)
1997 - Shuttle Laser Altimeter (NASA SLA)
Early 2000s - North Carolina achieves statewide Lidar coverage (used for updating FEMA flood insurance maps)
Statewide and regional consortiums being developed for the management and distribution of large volumes of Lidar data
 Currently 2 predominate issues - Standardization of data formats Standardization of processing techniques to extract useful information

Comparison of Lidar and Radar

Lidar	Radar
Uses optical signals (Near IR, visible). Wavelengths ≈ 1 um	Uses microwave signals. Wavelengths ≈ 1 cm. (Approx 100,000 times longer than Near IR)
Shorter wavelengths allow detection of smaller objects (cloud particles, aerosols)	Target size limited by longer wavelength
Focused beam and high frequency permit high spatial resolution (< 1m horizontal)	Beam width and antenna length limit spatial resolution (10s of meters). Synthetic aperture techniques reduce antenna length requirements.
Nadir looking sensor	Side looking sensor.
Limited to clear atmospheric conditions, daytime or nighttime coverage.	Can operate in presence of clouds. Daytime or nighttime coverage.

Topographic Lidar Operating Principles

Distinguish between **Pulsed** and **CW** Lidar systems.

•	Pulsed system:	Transmitted signal consists of a series of laser pulses, 10,000 to 150,000 pulses/second (10 - 150 kHz pulse rate). Range to target calculated from time to receive pulse: Range = $c^*t / 2$
•	CW system:	Transmits sinusoidal signal of known wavelength Range calculated from number of full waveforms and the phase difference between transmitted and received signal. Much less common technique compared to pulsed system.

Pulsed System Operation				
 Wavelengths utilized: 	1.0 - 1.5 μm(terrestrial studies)0.50 - 0.55 μm(bathymetric studies)			
 Combination of scanni of range measurements 	ng mirror and moving platform produces a 2D field			
 Additionally recorded i 	nformation: Angle from nadir of measurement GPS horizontal and vertical positions (1 Hz) Aircraft Inertial Measurements (pitch, roll, yaw) (50 Hz)			
 On board processing: 	Slant distance calculated from range measurement + angle from nadir for each returned pulse Slant distance corrected using IMU measurements			
	GPS data integrated to provide a georeferenced elevation value for each returned pulse.			
	GPS measurements are crucial to vertical accuracy.			

- Small footprint:	Ground ur Useful for detailed ve	nit = 5 - 30 cm detailed local mapping, edge detection, getation canopy studies	
- Large footprint:	Ground un	nit = 10 - 25 m	
	Larger swa	ith width	
	Useful for	larger scale studies of canopy response	
Footprint size is a f	function of	IFOV	
		Sensor altitude	
		Viewing angle from nadir	

Spatial Resolution Considerations for Pulsed System

- Achievable point density is a function of:
 - IFOV of instrument

- Altitude of platform

- Number of points collected

- platform speed
- scan speed and scan angle (swath width)
- altitude of platform
- pulse frequency
- For a given set of operating conditions, pulse frequency becomes the primary figure of merit.
- Pulse repetition frequencies have increased from about 5 kHz in 1995 to 150 kHz presently, reducing spatial grid resolutions to < 0.5 meters

Typical Lidar Performance Characteristics	(pulsed small footprint system, 2001)
---	---------------------------------------

Specification

Wavelength Pulse Rep. Rate Pulse Width Scan Angle Scan Rate Swath Width Z accuracy RMSE X,Y accuracy RMSE Footprint Resolution GPS frequency IMS Frequency Operating Altitude

Typical Value

1000-1500 nm 140 kHz 10 nsec 40° - 75° 25 - 40 Hz Up to 0.7 * altitude Approx 15 cm 10 - 100 cm 0.25 - 2 m (from1000m) 0.75 meters 1 Hz 50 Hz 500 - 2000 m

Post Processing Techniques

- Filtering Last Returns from point cloud to generate Bare Earth DEM.
 Capable of producing bare earth DEMs in areas with moderately dense vegetation cover.
- First Return Last Return to determine Canopy Height
- Filtering First and Intermediate returns to estimate vegetation biomass, tree densities, individual tree structure information
- Separate First Return signals at abrupt edges to delineate Building Features (small footprint systems)
- Several Filtering Methods are currently being developed. Most combine automated algorithms with manual correction.

Lidar Applications

- Update digital elevation models (NED)
- Glacial Monitoring
- Detecting Faults and measuring uplift
- Forest Inventory
- Shoreline and Beach Volume Changes
- Bathymetric Surveying (SHOALS)
- Landslide Risk Analysis
- Habitat Mapping
- Subsidence Issues
- Telecom Planning
- Urban Development

Free Lidar Sources

- Puget Sound LIDAR Consortium
- OR Dept. of Geology and Mineral Industries (DOGAMI). Portland DEMs.
- Louisiana State University
- Red River Basin Decision Information Network
- NOAA Coastal Services Center
- USGS Center For Lidar Information Coordination and Knowledge (CLICK)
- USACE Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX)
- North Carolina Floodplain Mapping Program

Bainbridge Island, WA. From Puget Sound Lidar Consortium

San Andreas Fault Detection Using Lidar

Aerial Photo

First Return DSM

Last Return DEM showing fault

http://quake.usgs.gov/research/geology/lidar/example1.html

References

Paul M. Mather. Computer Processing of Remotely Sensed Images. An Introduction. Copyright 2004, John Wiley and Sons.

Martin Flood, 2001. Laser Altimetry : from science to commercial LIDAR mapping. Photogrammetric Engineering & Remote Sensing, 67(11), 1209-1217.

Qi Chen, 2007. *Airborne Lidar Data Processing and Information Extraction.* Photogrammetric Engineering & Remote Sensing, 73(2), 109-112.

Jason Stoker, et al, 2006. CLICK: The New USGS Center for LIDAR Information Coordination and Knowledge. Photogrammetric Engineering & Remote Sensing, 72(6), 613-616.

David Harding, 2000. Principles of Airborne Laser Altimeter Terrain Mapping. NASA Goddard Space Flight Center.

NASA Tutorial: http://www.ghcc.msfc.nasa.gov/sparcle/sparcle_tutorial_morelidar.html

NOAA Coastal Services Center: http://www.csc.noaa.gov/crs/rs_apps/sensors/lidar.htm