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ABSTRACT Linear discriminant analysis (LDA) is fre-
quently used for classification/prediction problems in physi-
cal anthropology, but it is unusual to find examples where
researchers consider the statistical limitations and assump-
tions required for this technique. In these instances, it is
difficult to know whether the predictions are reliable. This
paper considers a nonparametric alternative to predictive
LDA: binary, recursive (or classification) trees. This ap-
proach has the advantage that data transformation is un-
necessary, cases with missing predictor variables do not
require special treatment, prediction success is not depen-
dent on data meeting normality conditions or covariance
homogeneity, and variable selection is intrinsic to the meth-
odology. Here I compare the efficacy of classification trees
with LDA, using typical morphometric data. With data from
modern hominoids, the results show that both techniques

Physical anthropologists commonly use linear dis-
criminant analysis (LDA) for prediction and classi-
fication, but rarely discuss its limitations, which are
quite-well documented in any basic textbook of mul-
tivariate statistics (e.g., Flury, 1997; Johnson and
Wichern, 1998; McLachlan, 1992; Mardia et al.,
1979; Morrison, 1990). A few researchers in physical
anthropology and allied fields (e.g., Campbell,
1984a—c; Corruccini, 1978; Feldesman, 1997; Ko-
walski, 1972; Schaafsma and van Vark, 1977, 1979;
van Vark, 1976, 1995) explicitly commented on the
assumptions required to undertake discriminant
analysis, canonical variates analysis, or multiple
discriminant analysis. These papers have not been
cited often, and some researchers who use LDA con-
tinue to do so without mentioning any of the crucial
assumptions or constraints (e.g., Aiello et al., 1999;
Holliday, 2000).

In most applications of LDA, researchers assume
either tacitly or explicitly that the data are multi-
variate normal and have homogeneous group covari-
ance matrices. In addition, the method depends on
correct assignment of training cases to groups, and
works most efficiently if the smallest group has sig-
nificantly more cases than variables and when
groups are approximately equally sized. In practice,
while LDA is only marginally affected by nonnor-
mality, outliers, covariance heterogeneity, and dis-
parate, unequal, and/or frequently small sample
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perform nearly equally. With complete data sets, LDA may
be a better choice, as is shown in this example, but with
missing observations, classification trees perform outstand-
ingly well, whereas commercial discriminant analysis pro-
grams do not predict classifications for cases with incom-
pletely measured predictor variables and generally are not
designed to address the problem of missing data. Testing of
data prior to analysis is necessary, and classification trees
are recommended either as a replacement for LDA or as a
supplement whenever data do not meet relevant assump-
tions. It is highly recommended as an alternative to LDA
whenever the data set contains important cases with miss-
ing predictor variables. Am J Phys Anthropol 119:257-275,
2002. ©2002 Wiley-Liss, Inc.
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sizes make classification results unstable under re-
sampling or cross-validation. These issues rarely get
addressed in reports where LDA is used for classifi-
cation or prediction. To make matters more compli-
cated, the most frequently used implementations of
LDA (.e., SAS, SPSS, and SYSTAT) are designed
only for complete suites of measurements on each
individual, and delete any case missing one or more
predictor variables. To overcome this, a few re-
searchers have used multiple regression to predict
missing values, or have substituted means for miss-
ing values.! These approaches were discredited by
Schafer (1997) and Schimert et al. (2000), who noted
that deleting cases throws away important informa-
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tion; replacing a missing value with a mean pre-
serves sample means but biases the estimated vari-
ances and covariances toward zero, while using
multiple regression imputation biases the correla-
tions away from zero. The effect of all these ap-
proaches is to distort information in the remaining
data, leading to potentially misleading answers, or
creating situations where it is difficult to discern
whether the methods work or fail.

Consequently, there are only limited parametric
options available for researchers whose interest is
classification of cases with incompletely observed
predictor variables.? Researchers must either 1) an-
alyze only cases with complete data sets, 2) form
multiple (and sometimes overlapping) subsets of
cases, each with slightly different measurement
suites analyzed sequentially, or 3) find, understand,
and apply a data imputation algorithm designed
both to “fill in” missing values and to estimate con-
fidence bounds on the resulting statistical estimates.
The first reduces the comparative sample size and
introduces subtle biases, the second reduces the
number of variables in any single analysis (e.g.,
Stringer, 1974; Kidder et al., 1992) and can inflate
significance levels when there are multiple compar-
isons, and the third is problematic unless the num-
ber of missing values is relatively small, and trou-
blesome unless great care is taken to avoid matrix
singularities resulting from the bias introduced by
“filling in” missing values (for a discussion of impu-
tation bias, see Breiman et al., 1984; Schafer, 1997).

When the research goal is classification, what are
the alternatives to LDA when the data fail to meet
its requisite assumptions? Alternatives include qua-
dratic discriminant analysis, multinomial logistic
regression, flexible discriminants, mixture discrimi-
nant analysis, robust discriminant analysis, and
neural networks. Hastie et al. (2001) and Ripley
(1996) reviewed the benefits and pitfalls of these
techniques. The present study considers a nonpara-
metric alternative to LDA. This technique is known
as binary recursive partitioning or, more commonly,
as “classification trees” (Breiman et al., 1984; Ven-
ables and Ripley, 1997, 1999; Therneau and Atkin-
son, 1997; Steinberg and Colla, 1997). My review
found no application of nonparametric alternatives
to LDA for classification and prediction problems in
physical anthropology.

In this paper, I compare the predictive accuracy of
nonparametric classification trees with LDA. I also
examine the results obtained with classification
trees that are applied to cases with incompletely
observed predictor variables; commercial LDA soft-
ware typically deletes such cases. While the idea of a
classification tree may be familiar to physical an-

?Note the usage here. This makes no reference to cases with un-
known (missing) response or classification variables. I do not consider
this problem in the current investigation (but see footnote 3 for a brief
discussion).
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thropologists accustomed to making taxonomic deci-
sions, classification tree algorithms are not ordi-
narily used for taxonomic purposes, and the
statistical methodology that underpins them may be
novel. Below, I discuss the methodology used in one
major classification tree algorithm through an ex-
tended example.

Classification trees, binary recursive partitioning,
or tree-structured analyses have been around since
the 1960s, but computational requirements limited
their use until recently. Breiman et al. (1984) were
responsible for bringing classification trees into the
mainstream of applied statistics and, in the process,
for developing their essential theoretical properties.

There are now many algorithms for formulating
such trees (e.g., Lim et al., 2000, who compared the
performance of 33 such algorithms). Of these, how-
ever, the binary recursive partitioning algorithm de-
veloped by Breiman et al. (1984), henceforth called
the BFOS algorithm, remains the best-known, most
dependable, and most thoroughly tested (Lim et al.,
2000).

Steinberg and Colla (1997) enumerated the gen-
eral technical advantages of the BFOS classification
tree algorithm over parametric techniques like LDA,
quadratic discriminant analysis, and multinomial
logistic regression. The primary advantages are: 1)
it is nonparametric, which makes questions of the
appropriate distributional form moot; 2) it requires
no advance variable selection, because variables are
automatically selected for their efficacy in reducing
classification errors; variables making little or no
contribution to classification success are not used; 3)
it is robust to outliers, which rarely define split
points that correctly classify a significant number of
cases (if they did, they wouldn’t be outliers); 4) its
results are invariant to monotone transformations
of independent variables (e.g., logarithmic transfor-
mation will not change the tree structure); 5) it can
use any combination of categorical and continuous
predictor variables (e.g., height, weight, sex, age,
hair color, or marital status); 6) it handles missing
values in predictor variables by developing splitting
rules based on alternate measurements (surrogates)
that exhibit strong concordance with the primary
splitting variable at any given point on the tree; and
7) cases with unknown and unknowable response (or
classification) variables (e.g., fossils) can be placed
in their/its own group and participate in tree con-
struction, which contrasts with LDA, where groups
with one or only a few cases must be excluded from
calculation of the LDA because it is not possible to
compute a meaningful covariance matrix on classes
that small.?

3The solution to the “unknown and unknowable group incumbency”
problem is intrinsic to binary tree methodology, as is the simulta-
neous classification of cases with missing predictor variables. The
current paper does not deal with the former, but the principle is
simple. Briefly, fossils are assigned to taxa. The relevant question is
the relationship between the fossil taxa and the other groups for
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Predictive or classificatory LDA is based on a sig-
nificant set of assumptions, many of which are vio-
lated by typical morphometric data. While failure to
meet some or all the assumptions is not a fatal flaw,
it is important to identify the extent of the depar-
tures, and to consider alternative techniques when
deviations are significant. As a result, I consider
whether such classification questions can be an-
swered effectively with nonparametric binary trees.

This paper explores the efficacy of binary recur-
sive classification trees in two circumstances: first,
as an alternative to predictive LDA when data do
not meet the necessary assumptions; and second,
when missing data reduce the size of the data set
presented to a standard packaged LDA routine.

MATERIALS AND METHODS

Data for the present inquiry consisted of 10 mea-
surements primarily from the distal humerus of 237
modern hominoids: 86 Pan gorilla, 114 Pan troglo-
dytes, 23 Pongo pygmaeus, and 24 Homo sapiens.
Sex, taxonomic affiliation, and complete measure-
ment suites were recorded for all specimens. All
nonhumans were wild-shot adults curated in five
Western European museums; the human materials
were mixed ethnicity and sex (autopsy) skeletons
that make up Portland State University Anthropol-
ogy Department’s osteological teaching collection.
The measurements, described in Feldesman (1976),
include: LATSUPRI (length of the lateral supra-
condylar crest), MEDEPICO (medial epicondyle ex-
pansion), PDHTCAPI (proximo-distal height of ca-
pitulum), MLHTCAPI (medio-lateral breadth of ca-
pitulum), APHTTROC (antero-posterior height of
trochlea), ANTARTBR (anterior articular breadth),
OLECRDEP (olecranon fossa depth), HUMLENGT
(maximum humerus length), and BIEPI (biepicon-
dylar breadth). Previous morphometric investiga-
tions (Feldesman, 1974, 1976, 1982, 1986) demon-
strated that these measurements are very effective
in sorting hominoid humeri on the basis of habitual
locomotor behavior.

Recent studies (Schilling, 1997; Feldesman, un-
published findings) showed that the current data set
is nonnormal, has grossly unequal within-taxon co-

which group incumbency has been established by a host of consistent
information additional to skeletal morphology. Since binary trees are
not computed from covariance matrices, the number of cases per
group is irrelevant; groups having few cases are involved in tree
construction from the outset, unlike the situation in LDA (but for an
alternative parametric approach involving covariance matrices, LDA,
unsupervised classification, and principal components analysis, see
van Vark, 1995). The major challenge for any technique that involves
“pregrouped” data is how to assign group prior probabilities and
misclassification costs. Breiman et al. (1984) discussed this exten-
sively, and the present investigation offers some clues about how prior
probabilities affect results. Misallocations under binary trees yield
important insights about how fossils are related to extant groups in
the study. Similarly, fossils that are “correctly” assigned (i.e., remain
in a coherent group) reveal equally significant information about
intergroup relationships.
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variance structures (partly resulting from sample
size differences, partly from gross physical size dif-
ferences), has subtle (but “normal”) outliers, and
suffers from gross inequalities in sample mixture
proportions. These characteristics make the data
challenging to use reliably with discriminant anal-
ysis, for it is difficult to disentangle the results of the
analysis from the problems that afflict the data
themselves.

As a baseline for comparing the BFOS algorithm,
I first run and report the results of a standard ca-
nonical linear discriminant analysis using S-Plus
2000’s discrim function (Mathsoft, 1999). I ignored
issues of univariate or multivariate normality, co-
variance heterogeneity, or sample mixture. Since
binary, recursive partitioning uses a cross-valida-
tion scheme not found in any commercial LDA pack-
age, I wrote an S-Plus function (based on Venables
and Ripley, 1999) for discrim that implements 10-
fold cross-validation in place of ordinary leave-one-
out (or jackknife) cross-validation. This allowed me
to compare cross-validated LDA classification statis-
tics directly with those from classification trees.

Typically, morphometricians develop prediction
equations with LDA and use the classification accu-
racy statistics to validate the prediction equations:
high classification accuracy equates with “valid” pre-
diction models. However, if the data appear to vio-
late one or more crucial assumptions (e.g., neither
univariate nor multivariate normality, unequal co-
variance structures, significant outliers, disparate
sample mixture proportions, or missing predictor
variables), the classification statistics (both resub-
stitution and cross-validated) may be untrustwor-
thy, which in turn makes the equations suspect. In
these circumstances, it is advisable to compare the
LDA results with alternative methods before draw-
ing conclusions about their validity.

For the classification tree analysis, I chose Ther-
neau and Atkinson’s (1997) implementation of the
BFOS algorithm (rpart) because it conforms closely
to the specifications laid out in Breiman et al. (1984).
Specifically, I used both Windows and Linux ver-
sions of rpart in conjunction with the GNU-S open
source statistical package called R (Ihaka and Gen-
tleman, 1996). Both R and rpart are available free
for most operating systems at http://www.r-projec-
t.org.

As noted earlier, the concept of classification trees
does not appear to be well-known to most physical
anthropologists. Thus, before presenting my results,
I walk the reader through the major rpart calcula-
tions for a relatively simple example.

Binary recursive partitioning: an example

When Fisher (1936) developed the LDA, he dem-
onstrated it with data from the taxonomic survey by
Anderson (1935) of irises. Anderson (1935) mea-
sured four attributes (sepal length, sepal width,
petal length, and petal width) on 50 specimens each
from three different species of irises: Iris setosa, Iris
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versicolor, and Iris virginica. Fisher (1936) used
LDA to test a genetic hypothesis that I. versicolor
was a hybrid two-thirds of the way between the
other two species. The iris data of Anderson (1935)
are commonly supplied as test data for any modern
LDA program, and are nicely suited to demonstrate
the BFOS classification tree algorithm.

For simplicity, I used a random half of the data of
Anderson (1935). The sample drew unequally from
the three species; however I treated the prior prob-
abilities of each group as equal to mimic the real-life
problem of unknown population mixtures and oppor-
tunistic sampling. This mirrors the typical paleoan-
thropological investigation, and assumes that a ran-
dom draw from this sample could be assigned to any
one of the 3 species with an equal likelihood. Thus:

Tsetosa — Mversicolor — inrginica = 03333;

where m denotes the prior probability of any group.
Such priors mean that 67% of the cases would be
misassigned by chance alone. We can express this
expectation by a “loss” function that measures the
heterogeneity of the sample as a function of the prior
probabilities:

loss =1 — >, @2, where i

1

(D

The expected loss in the Iris example can therefore
be calculated as 1 — 0.33% — 0.33% — 0.33% = 0.67,
following Eq. (1). A modified version of Eq. (1) uti-
lizing “Bayesian probabilities” (see below; often sym-
bolized by I(Node)) is called the Gini diversity index
(Therneau and Atkinson, 1997; Venables and Rip-
ley, 1999). This index measures the “impurity” (i.e.,
heterogeneity) in the node and I(Node) € [0,1].
Breiman et al. (1984) recommended that binary
splits be chosen to minimize the Gini diversity index.

Binary, recursive trees are easily visualized by
examining box plots for each iris measurement
across the three species. Obvious division points are
evident in the boxplots depicted in Figure 1. Iris
setosa can be clearly distinguished from the other
species by either petal length or petal width.

The BFOS algorithm examines all possible uni-
variate divisions of the data. Discounting duplicates,
it iterates over a maximum of 300 possible branch
points (75 cases X 4 measurements) to find the one
that produces the greatest increase in classification
accuracy. For each potential split, cases are moved
to the left or right descendant based on the answer
to a “yes/no” question, e.g., “Is Petal Length <2.5?”
Since the response is unambiguous except if Petal
Length is missing, a case must go either left (“yes”)
or right (“no”). To find the “best” split, the BFOS
method calculates the Gini diversity index for each
possible bifurcation. From this, it computes the “im-
provement” in classification accuracy resulting from
the proposed decision rule. The winning split com-
bines the greatest reduction in the Gini diversity

=1...number of groups.
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Iris Sample Before Splitting
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Fig. 1. Box plots of Iris species at root node. Note that Iris

setosa can be distinguished easily from other species on basis of
Petal Length or Petal Width.

index with the greatest increase (improvement) in
the number of correct assignments. Once the algo-
rithm locates the “optimum” division point, the sam-
ple is split at the midpoint between the actual “best”
value, and the closest (but larger) recorded value of
the same variable. Appendix 1 and Figure 2 depict
the actual rpart tree, in two different formats, both
confirming that all setosa cases are sent to the left
when Petal Length <2.5, while non-setosa go right
with Petal Length = 2.5.

These calculations (and others) can be expressed
as general formulae (see Breiman et al., 1984; Th-
erneau and Atkinson, 1997), but are considerably
easier to understand in the context of a specific
worked example. I do this below for the BFOS com-
putations relevant to the Iris binary tree depicted in
Figure 2.

The calculation of the Gini diversity index and the
classification “improvement” are essential starting
points and depend on information from the problem
statement. We are given:

Tsetosa — Tversicolor — inrginica = 03333
N=175

Dgetosa — 287 Nyersicolor — 22’ nvirginica =

25.

From this we can compute the Gini diversity index
(or impurity) for the unsplit root node:

— 2 2 2 _
I(ROOt) =1- Tsetosa — Mversicolor Trvirginiea - 0677

from Eq. (1) above.

Subsequent calculations require access to both the
condensed summary of the numerical information
(Appendix 1), and the actual classification tree (Fig.
2) with branches denoted by the splitting criterion.
Our immediate interest is in nodes 2 and 3, which
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Irises of Gaspe, Uniform Priors

Root Node (Node 1)

Node 2

Node 7

petlengin>=4.85

Fig. 2. Complete classification tree of Iris species generated from rpart. Terminal nodes are symbolized by rectangles; nonterminal
nodes, by ovals. Splitting criteria specified on each branch. Numbers below taxon represent number of cases assigned to each taxon
within the node. The convention in rpart is to number the “root node” as 1 and splits as n and n + 1; node numbers do not reflect an
actual count of the number of splits. Thus, the split of node 1 results in nodes 2 and 3. The split of node 3 results in nodes 6 and 7;
node 6 splits to 12 and 13; node 103 represents the right child of the split involving node 51, etc.

result from dividing the root node. The summary
illustrated in Appendix 1 contains information es-
sential to understand the tree construction. Figure 2
can be drawn entirely from the details of Appen-
dix 1.

More extensive output is available in the full rpart
object. It appears here as Appendix 2. This output
can be copious for a large tree, but is crucial for
understanding the internals of the algorithm. Most
of the information in Appendix 2 derives from ele-
mentary probability theory.

“Petal Length <2.5” splits the root node. Cases
meeting this criterion move left to node 2; the rest
move right to node 3. The information reported in
Appendix 2 can be replicated from the following
computations.

The conditional probability of a case being as-
signed to node 2, given that it is classified as Iris
setosa is: P(2 | setosa) = 28/28 = 1.0.

This is the proportion of the I. setosa specimens
reaching node 2. Since this node consists entirely of
I. setosa, there are no additional conditional proba-
bilities to compute. The principle for calculating con-
ditional probabilities in impure nodes is, however,
quite straightforward, as we will see for node 3.

Rpart computes two separate node probabilities
(“Bayesian probabilities” and “altered priors”) but
only reports one. Both are needed at various points
in tree construction. The current rpart version
(3.1.1) prints Bayesian probabilities, which are used
to calculate the Gini diversity index. “Altered priors”
are node probabilities that have been scaled both for
initial prior probabilities and by the proportion of
the original cases that actually reach the descen-
dant. These are not printed, but are important for
computing the “expected loss” (probability of mis-
classification, adjusted for prior probabilities). This
calculation is illustrated below for node 2:
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psetosa(altered) = (Wsetosa X (P(2|Setosa)))/(n2/N)
=(0.33 X 1.0)/(28/75) = 0.8929 (2)

Since node 2 consists of only one species, it is “pure”
(homogeneous), cannot be split further, and has an
expected loss of 0.0. Nodes that include more than
one group have misclassifications and a nonzero ex-
pected loss, calculated as:

L(HOde) = E Pi(altered) — max(pi(altered)) (3)

i=1l.n

Rpart also calculates unconditional probabilities for
all nodes, i.e., the likelihood that any case ends up in
a particular node. This can be calculated for node 2
from the total probability theorem as:

P(2) = Tsetosa X P(2|Setosa) + T yersicolor
X P(2|versicolor) + mginica X P(2|virginica).

Substituting all the previously calculated and given
values, P(2) = 0.3333.

From Bayes’ Theorem, we can also calculate the
probability of an Iris setosa given that the specimen
is in Node 2. Bayesian probabilities are those in
parentheses in Appendix 1, listed as “probabilities”
within each node in Appendix 2, and are used to
calculate the Gini Diversity Index. The highest
Bayesian probability at each node is also used to
determine the node classification, assuming all de-
scendant nodes were pruned away:

P(setosa|2) = 0 X P(2|setosa)/P(2).

Not surprisingly, P(setosa|2) is 1.0, since all node 2
cases are I. setosa.

This yields enough information to determine node
heterogeneity. Recall that the algorithm cycles
through every possible binary split, making all these
calculations for each one, before choosing the “win-
ning” variable and its value. At each, an impurity
measure is calculated to assess the extent to which
the node is heterogeneous. The winning split has the
lowest summed impurities across both descendant
nodes. node 2 impurity is calculated as:

Impurity(2) = I(2) = 1 — P(setosal2)% = 0.0.

The impurity measure for node 3 (and all subse-
quent nodes) is computed exactly as for node 2, but
heterogeneity increases the number of individual
calculations. For node 3, these are:

P(3|setosa) = 0/28 = 0.0 (altered prior = 0.0)
P(3|versicolor) = 22/22 = 1.0(altered prior
=(0.33 X 1.0)/(47/75) = 0.5319)
P(3|virginica) = 25/25 = 1.0(altered prior
=(0.33 X 1.0)/(47/75) = 0.5319)

By using the “altered priors” formulation (2), the
expected misclassification proportion (“expected
loss”) for node 3 is:

L(3) = (0.5319 + 0.5319) — 0.5319 = 0.5319,

M.R. FELDESMAN

which shows in Appendix 2 as “expected loss.” It is
scaled to node size in Appendix 1 (i.e., 47 X L(3) =
25).

The unconditional probability of Node 3 is:

P(3) = wsetosa >< P(3 | Setosa) + ﬂ-versicolor
x P(3|versicolor) + Myirginica X P(3 | virginica).

Making the relevant substitutions, P(3) = 0.67. This
leads to the Bayesian probabilities of each species
given their assignment to node 3:

P(setosal3) = e X P(3|setosa)/P(3) = 0.0

P(versicolor|3) = 7y eraicotor

x P(3|versicolor)/P(3) = 0.5
P(virginical 3) = Tyirginica

x P(3|virginica)/P(3) = 0.5
Finally, node 3 impurity is computed as:
I(3) = 1 — P(setosal3)% — P(versicolor| 3)?

— P(virginical3)? = 0.5

These calculations are preliminary to the computa-
tion of overall “improvement.” “Improvement” is al-
ways measured relative to the parent node. Since
nodes 2 and 3 are children of node 1 (the root),
relative improvement (RI) is compared to the root
node

RI=I(R) — P(2) X I(2) — P(3) X I(3),

Substituting all computed values (0.67 — 0.33 X
0.0 — 0.67 X 0.5), RI = 0.33. The absolute improve-
ment (25) is scaled to overall sample size. This indi-
cates that the maximum increase in correct classifi-
cations over the root node by splitting at petal length
<2.5.

Because node 3 is 50% impure and includes more
than 5 cases,* rpart splits it again. Nodes 6 and 7
represent the bifurcation of node 3. Figure 3 depicts
the boxplots for cases specifically assigned to node 3,
and again shows petal length to be the probable
binary “splitter” separating the remaining Iris spe-
cies.

To move from node 3 to nodes 6 and 7 requires the
same computational sequence as described above.
The principal difference is that “improvement” is
measured relative to node 3 instead of to the root
node.

To complete the example, the key computations
are:

P(6]setosa) = 0/28 = 0.0 (altered prior = 0.0)

P(6]|versicolor) = 21/22 = 0.9546 (altered prior
= (0.33 X 21/22)/(21/75) = 1.136

4This defaults to 5, but is under user control. In circumstances
where there are a priori groups with fewer than 5 cases (a fossil taxon,
perhaps) the user might want to set this to a lower value.
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Iris Sample At Node 3

Sepal Length Sepal Width
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versicolor {| - - -4 versicolor —{ | - - - 1
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Fig. 3. Box plots of Iris species after splitting root node and
removing all Iris setosa specimens.

P(6]|virginica) = 0.25 = 0.0 (altered prior = 0.0)
P(6) = Teeoen X P(6]setosa) + mersicolor
X P(6|versicolor) + Tyirginica
X P(6]virginica) = 0.318
P(setosal6) = 7.y X P(6]setosa)/P(6) = 0.0
P(versicolor|6) = myraicolor
x P(6|versicolor)/P(6) = 1.0
P(virginical 6) = i ginica
X P(6|virginica)/P(6) = 0.0
I(6) = 1 — P(setosal6)? — P(versicolor|6)?
— P(virginical6)? = 0.0
Loss(6) = (0.0 + 1.0 + 0.0) — 1.0 = 0.0
The calculations for Node 7 are:
P(7|setosa) = 0/28 = 0.0 (altered prior = 0.0)
P(7|versicolor) = 1/22 = 0.0455(altered prior
= (0.33 X 1/22)/(26/75) = 0.0437)
P(7|virginica) = 25/25 = 1.0(altered prior
= (0.33 X 25/25)/(26/75) = 0.9615)

Loss(7) = (0.0437 + 0.9615) — 0.9615 = 0.0437
P(7) = Tyerosa X P(7]set082) + Trersicotor
X P(7|versicolor) + Tyirginica
X P(7|virginica) = 0.3485
P(setosal7) = T X P(7|setosa)/P(7) = 0.0
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P(versicolor|7) = mersicolor
X P(7|versicolor)/P(7) = 0.04348
P(virginical|7) = 7yirginica
X P(7|virginica)/P(7) = 0.95652
I(7) = 1 — P(setosal7)? — P(versicolor| 7)?
— P(virginical7)? = 0.0832

The “improvement” combines results from nodes 6
and 7 and is measured relative to node 3.

Improvement = I(3) — (P(6)
X 1(6))2 — (P(7) X I(7)2.

Substituting accordingly, (0.5 —(0.318 X 0.0)*> —
(0.3485 x 0.0832)%), the relative improvement is
0.304345, and the absolute improvement is I(3) X
75 = 22.826, as reported.

Theoretically, it is possible to continue splitting
impure nodes until all cases are classified. However,
this typically produces trees that are quite “bushy,”
hard to interpret, and harder to generalize to new
data. Since the goal of classification trees is to gen-
eralize to unknowns, we want a tree that is “trained”
to our learning dataset, but not so fine-tuned that
the results generalize poorly to new data.

Breiman et al. (1984) demonstrated that trees
with distant terminal branches snipped off
(“pruned”) typically generalize better to unknown
data. As a result, they introduced the concept of tree
pruning via “cost-complexity.” This is now the pri-
mary way all recursive partitioning methods cut
trees down to size. The principle is simple. As trees
grow, they become more complex, while misclassifi-
cation error rates decline. Breiman et al. (1984) pro-
posed a strategy that attempts to balance the num-
ber of terminal nodes with the misclassification
error rate. This is patterned after regression models
that try to optimize the error sum of squares and the
number of parameters. Models are penalized for ad-
ditional parameter. By extension, Breiman et al.
(1984) suggested penalizing models each time an-
other split occurs. If the additional split does not
improve the fit enough to overcome the penalty (the
tree “cost”), the smaller tree is selected. Breiman et
al. (1984) proposed this cost-complexity parameter
(CP) as:

CP = Training Misclassification Rate + «

X (Number of Terminal Nodes),

where « is the penalty for each additional terminal
node. If a is 0, there is no penalty for additional
nodes. If « is set arbitrarily large (up to ), the root
node is preferred because it is the smallest tree.
Thus, when « lies between 0 and «, different trees
are selected.

In rpart, CP is computed as « / (root node relative
error) (Venables and Ripley, 1999). This makes CP
and a equivalent, since the root node relative error
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TABLE 1. Complexity parameter table for Iris classification tree

CP Split rel error Xerror xstd
1 0.5000000 0 1.00000000 1.20467532 0.07127029
2 0.4772727 1 0.50000000  0.80922078  0.09055846
3 0.0100000 2 0.02272727  0.08545455 0.04166163

is normalized to 1.0. Rpart determines the complex-
ity parameter when it calculates “improvement” and
the resulting absolute and relative error. The abso-
lute root node error is 0.67, as shown earlier. A
single binary split of the root node decreases the
absolute error to 0.33 and the relative error to 50%.
From this, CP can be computed as:

CP; = (RE; — RE;,)/((nsplit; ;) — (nsplit;)) (4)

For the iris data, the CP table (Table 1) shows the
root node CP as simply (1.0 — 0.5)/(1 — 0) = 0.5.
Furthermore, after 1 split (2 branches), the CP is
(0.5000 — 0.02272727)/(2 — 1) = 0.47727217.

The CP can be interpreted as the improvement in
fit compared to a tree with one less split. The chief
reason for using it is to “cost out” the improvement
in fit resulting from the addition of another split in
the data. It also measures the accuracy lost by re-
moving one or more terminal nodes. An Iris tree
with one terminal node decreases classification error
by 50% over the root node; a tree with 2 terminal
nodes improves the fit an additional 47.7%, while
there is only a small gain from a third terminal
node. By default, rpart stops growing trees when
CP = 0.01.

The BFOS algorithm uses 10-fold cross-validation
to determine whether and where to prune the tree.
CP is useful for determining pruning sequences and
for identifying potential “best trees,” but it is not
helpful for selecting the “best tree;” larger trees al-
ways yield better fits than smaller trees. The ideal
solution is to use one sample to grow the tree, and a
second sample to test it. Pruning is then based on
the error rate of the test sample. Unfortunately, few
of us have “spare” data. Cross-validation finesses
this problem by splitting the original sample into k
(10 in BFOS) parts, and combines k — n of these
parts into a learning sample, and uses the remain-
der (n) as a test sample. The learning sample is used
to develop trees, which are validated with the test
sample. This process is repeated over all possible
splits of the data into k — n and n partitions. By
averaging all k test results, the final classification is
a single, unbiased estimate of the error rate in the
full, unsplit sample (Hastie et al., 2001).

Rpart reports xerror and xstd, the pooled 10-fold
cross-validated error rate and the cross-validated
standard deviation, for all trees of a particular size.
The final tree size can be chosen to minimize xerror.
This is typically the largest tree. Breiman et al.
(1984), Therneau and Atkinson (1997), and Ven-
ables and Ripley (1999) recommended the 1 SE rule,
which favors the largest tree with xerror within 1
standard deviation of the minimum. In this exam-
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Fig.4. Rpart plot of complexity parameter vs. cross-validated
relative error and tree size for Iris data. Horizontal dotted line
represents the 1 SE pruning point recommended by Breiman et
al. (1984). Because the cross-validated error intersects 1 SE line
at a complexity parameter only slightly smaller than the full (3
terminal node) tree, the larger tree is preferred.

TABLE 2. Resubstitution classification matrix for full Iris
classification tree'

1 2 3
Iris setosa 28 0 0
Iris versicolor 0 21 1
Iris virginica 0 0 25

1 98.7% correctly classified.

ple, the 1 SE rule gives 0.0855 + 0.0417 = 0.1272.
Since the tree with two leaves (line 2) has xerror =
0.8092, while the full tree has xerror = 0.0855, we
could arguably select a tree with only two terminal
nodes. However, since 1 SE finds xerror so close to
the maximal tree (and so far from the next smaller
tree), the larger tree is probably a better choice.

A visual tool in rpart allows for selecting the “best”
tree. It plots CP against xerror and tree size, and
places a horizontal line at the 1 SE boundary. The
optimal tree size can be read directly from the graph
by finding the largest tree with xerror not crossing
the horizontal line. In Figure 4, xerror crosses just
slightly to the left of a tree with 3 terminal nodes,
our largest tree. This is further justification for
choosing the maximal tree.

Table 2 shows the resubstituted classification ma-
trix for the full Iris tree. Only one case (I. versicolor)
is misclassified.

These results are biased because the cases classi-
fied are exactly the same cases used to grow the tree.
By default, rpart also generates a classification ma-
trix for the pooled 10-fold cross-validation results,
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TABLE 3. Cross-validation classification matrix for full Iris
classification tree*
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TABLE 4. Coefficients of S-Plus canonical variates for
10-variable analysis

1 2 3 Variable CVvl1 CV 2
Iris setosa 28 0 0 LATSUPRI 0.0479995 0.0479254
Iris versicolor 0 19 3 MEDEPICO —0.0740558 0.0940120
Iris virginica 0 0 25 PDHTCAPI 0.0041735 0.2970626
MLHTCAPI 0.2783228 0.0143315
1 96% correctly classified. APHTTROC —0.1012576 —0.1714853
MLHTTROC —0.0840499 —0.0955087
ANTARTBR 0.1109658 —0.0087553
which is an independent and unbiased estimate of OLECRDEP —0.0745032 —0.2027351
c s HUMLENGT —0.0383797 0.0267279
the prediction error rate (Table 3). BIEPI 0.0615746 0.0999365
These 10-fold cross-validation results barely differ Eigenvalue 5.494 1.259
from the full tree. Two additional specimens, both % trace 79.6% 18.3%

also from I. versicolor, are misclassified as I. vir-
ginica. Since Fisher’s original hypothesis tested
whether I. versicolor was a hybrid between I. setosa
and I. virginica (but closer to I. virginica), these
results are not unexpected.

Classification is quite straightforward when all
cases have complete sets of predictor variables. Both
known and unknown cases are literally “dropped”
down the tree, following a binary path until they
find a terminal node, which determines class assign-
ment. Surrogate variables, which appear in Appen-
dix 2, are relevant only if there are cases with miss-
ing primary split variables. Surrogate splitting
variables are alternatives to the primary, chosen for
their concordance with the primary splitting vari-
able results on a case-by-case basis. Other variables
may correlate more strongly with the primary split-
ter, or may classify more cases correctly than an
alternative (nonprimary) splitter. However, surro-
gates get selected for how well they mimic the pri-
mary splitter behavior. When a primary splitter is
missing, the algorithm merely selects the highest-
ranking, nonmissing surrogate variable and uses its
value to move a case down the tree. This approach is
much simpler than imputing missing values, or de-
leting cases with missing predictors.

The calculations detailed for the Iris example
have exact (if more complicated) parallels with the
hominoid data. The hominoid results below are ob-
tained in exactly the same way as with the Iris
material. Only the computational details are omit-
ted. As with the Iris sample, I assigned equal prior
probabilities to the four hominoid taxa. Although
the sample mixture is weighted heavily toward Pan
gorilla and Pan, its composition is completely oppor-
tunistic, and there is no indication of the true fre-
quency of any of these taxa in real populations.

After subjecting the full hominoid data set to LDA
and rpart, I then applied rpart to a modified version
of the hominoid data that had missing predictor
variables. I selected 10% of the sample (25 cases) at
random, and then applied 1 of 6 different missing
value combinations randomly to these cases. These
variables are frequently missing from fragmentary
fossil humeri, or from incomplete modern forms.
LATSUPRI requires a significant portion of the di-
aphysis and distal humerus to measure accurately,
while HUMLENGT requires the entire bone. The

TABLE 5. Resubstitution classification statistics for LDA'

1 2 3 4
Gorilla 82 0 0 4
Pan 0 90 0 14
Pongo 0 0 22 1
Homo 0 4 1 19

189.9% correctly classified.

latter measurements (size driven, of course) figure
prominently in LDA results, and as primary split-
ters in the classification tree. Both are commonly
missing in fragmentary fossils, especially those pre-
serving only the distal humerus. On the distal hu-
merus, the medial epicondyle is frequently broken
off. When this occurs, BIEPI and MEDEPICO are
unmeasurable, and measuring OLECRDEP may be
problematic. As is shown, BIEPI, LATSUPRI,
OLECRDEP, and HUMLENGT are main splitting
variables, while MEDEPICO is a surrogate splitter.
Paleoanthropologists typically face data like this,
and this simulation will give some indication of how
well the BFOS algorithm behaves under such con-
ditions. There is no directly comparable simulation
using LDA. In LDA, data imputation would be a
necessary antecedent to predicting class assign-
ments of cases with missing predictors. While this
comparison would be interesting, it would be diffi-
cult to evaluate the results, since BFOS uses only
available data, while the LDA would use cases made
“whole” statistically.

RESULTS

Table 4 summarizes the results of the hominoid
humerus LDA. It provides the canonical variates as
well as the eigenvalues for each of the relevant ca-
nonical axes. The latter indicate the relative impor-
tance of each canonical axis. The LDA resubstituted
classification statistics for these data are detailed in
Table 5, which shows a very significant number
(89.9%) of hominoid humeri correctly classified.

Figure 5 depicts a two-dimensional scatterplot of
canonical axes 1 and 2, which visually demonstrates
the group separations in discriminant space. Note
that the confidence ellipses superimposed over the
group centroids are not all oriented in the same
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Fig. 5. Bivariate scatterplot of canonical variates 1 and 2,
generated using the S-PLUS function discrim. Confidence ellipses
surrounding each group centroid encompass 90% of the bivariate
means for each group.

direction; Homo and Pan (the taxa with the smallest
individuals) have major axes oriented about 20°
away from those of Pongo and Pan gorilla. This
visually confirms that the group covariance struc-
tures are unequal (Wilkinson et al., 1996; Ripley,
1996). Statistical confirmation of covariance in-
equality comes from a highly significant Box’s M
statistic (not reported).®

The eigenvalues and percent trace in Table 4, and
the classification matrix in Table 5, show that LDA
easily separates the four groups, and correctly clas-
sifies the vast majority of cases. Nearly 90% of the
cases are resubstituted correctly: a convincing num-
ber in the face of nonnormality, covariance hetero-
geneity, and significant disparities in sample mix-
ture. The resubstitution results also show that all
groups have fairly high correct classification rates.
Humans are misclassified most frequently, while
Pongo and Pan gorilla have the fewest misclassifi-
cations.

The 10-fold cross-validation results (Table 6) pro-
vide additional strong support of the power of LDA.
They show a small decline in classification accuracy,
from 89.9% to 86.9%.° This decline is not evident
under ordinary leave-one-out cross-validation,
which barely changes from the resubstitution statis-
tics (89.2%, but not tabulated here). The 10-fold
cross-validation distributes misclassifications across
all taxa, but Pan gorilla and Homo misclassifica-
tions are slightly more prevalent. The cross-valida-
tion reveals that “new” data would not perform as
well as the more optimistically classified full train-

5T am well aware that Box’s M is highly sensitive to sample size
disparities, which makes its interpretation tricky.

%Since 10-fold cross-validation results can vary with the way the
sample is partitioned, I ran the analysis 10 times. The classification
accuracy varied from 83—-89%, with an 87% average.
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TABLE 6. Ten-fold cross-validation classification

results for LDA'
1 2 3 4
Gorilla 79 0 1 6
Pan 0 89 2 13
Pongo 0 1 21 1
Homo 0 5 2 17

186.9% correctly classified.

ing set, but the results are not dramatically different
from the resubstitution statistics. This is reassuring
information when the goal is to classify new and/or
unknown data.

The rpart results compare quite favorably to the
LDA. Figure 6 depicts the full rpart tree built from
the complete hominoid data set, while Appendix 3
presents the detailed statistics from the tree. The
intermediate and terminal nodes in Figure 6 are
clearly labeled, and the classification rules are easy
to decode.

The full binary tree in Figure 8 consists of 7 ter-
minal nodes. The terminal node classifications (at
nodes 2, 7, 13, 24, 50, 102, and 103), indicate 215
cases (91%) correctly assigned. This is slightly better
than the resubstitution classification rate under
LDA.

LATSUPRI, HUMLENGT, BIEPI, MLHTTROC,
and OLECRDEP are the primary splitting variables
for this tree; HUMLENGT is used twice. Under 10-
fold cross-validation (Table 7), classification accu-
racy declines to 85%, which is a slightly steeper drop
than occurs with cross-validated LDA.

The classification tree training sample error does
not single out any one group for frequent misclassi-
fication. This can be seen easily in Figure 6; the
misclassification rates for all groups except Pan go-
rilla (2%) range from 9-14%. The classification tree
does a better job classifying humans correctly (88%)
than does LDA (80%). Under cross-validation (Table
7), Pan gorilla and Pan classification accuracy de-
clines slightly, while Homo and Pongo drop more
significantly. The former drops from 12% misclassi-
fied to 33% misclassified under cross-validation,
while the latter declines from 9% misclassified to
31% misclassified. This is in significant contrast to
LDA, where there is a more uniform distribution of
misclassification errors moving from resubstitution
to cross-validation. It is tempting to link this high
cross-validation misassignment rate to the original
small sample sizes of Homo and Pongo. While this is
certainly possible, more research is required to de-
termine the relationship between sample size and
classification error.

As noted earlier, one advantage of binary-recur-
sive partitioning is the opportunity to consider
smaller models, often making use of fewer variables.
Figure 7 offers insight into how the tree could be
pruned. Using the 1 SE criterion recommended by
Breiman et al. (1984), the 7-terminal node tree could
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Hominoids, Uniform Priors
Unpruned Tree

Root Node

GORILLA
86/24/104/23

Node 3
Node 2 biepi>#76.6
biepiXy6.6
GORILCA HOMO
75/0/0/1 11/24/104/22
Node 6 Node 7
latsupr<317.1
latsupridg117.1
PAN PONGO
11/23/104/1 0/1/0721
Node 12 Node 13
humleng#=300.5
humlengt<300.5
HOMO AN
11/21/36/1 0/2/68/0
Node 24 Node 25
mihttrog#=30.75
mihttrod¢30.75
UK LA
9/0/0/0
Node 50 Node 51
olecrdep<13.05
olecrdep>=13.05
HOMO PAN
0/16/8/11 2/5/28/0

Node 102 humlengt>=317

ONO

25070

Node 103
humlengt<317

PAN
onrz1n

Fig. 6. Full rpart tree for hominoid data. Node labelling follows the convention used in rpart, and corresponds with information

both in the text and in Figure 2.

TABLE 7. Ten-fold cross-validation results for Hominoid
classification tree®

1 2 3 4
Gorilla 82 4 0 0
Homo 2 16 6 0
Pan 0 16 88 0
Pongo 3 4 0 16

1.85.2% correctly classified.

be pruned down to a 4-leaf tree.” Accordingly, we
could obtain a tree with 4 leaves by snipping off
nodes 50, 51, 102, and 103. Although it is not figured
here, it is quite easy to imagine. The resulting tree
leaves 3 genuinely terminal nodes, with node 25 as a

“Note the terminology here. All terminal nodes are leaves, but not
all leaves are terminal nodes. A leaf is an endpoint of a tree that has
either been split as far as it can be (a terminal node, by definition) or
is at the end because tree-growing has been stopped prematurely via
pruning. In this case, the leaf may be more heterogenous than homog-
enous.

very heterogeneous leaf, classified as Homo on the
basis of Bayesian probabilities. This has two effects.
First, OLECRDEP is eliminated as a splitting vari-
able. Second, the classification accuracy for Pan de-
clines significantly, while the other 3 taxa retain
their prepruning classification accuracy. This per-
mits a researcher to trade uncertainty in classifying
Pan for reliability in classifying the other taxa using
fewer measurements.

Table 8 summarizes the missing values simula-
tion. Of the 25 specimens missing one or more cru-
cial variables, 21 were correctly classified: an initial
accuracy rate of 84%. Pan gorilla is never misclas-
sified, regardless of missing predictor. This suggests
that size is so pervasive a factor for Pan gorilla that
misassignment is nearly impossible. Only one error
involves Pongo; the rest are either Pan or Homo, the
two physically smallest and most size-similar taxa.
Three of the four misclassifications occur when both
LATSUPRI and HUMLENGT are missing; however,
four other cases missing both variables are correctly
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Fig. 7. Complexity parameter plot for hominoid classification
tree. Labelling follows that of Figure 4. This suggests that a tree
with 4 splits (5 nodes) is adequate. Such a tree would prune nodes
50, 51, 102, and 103 from the tree depicted in Figure 6.

classified. It is hard to argue from this that these
variables are particularly significant for classifica-
tion accuracy. Moreover, one of the misclassified
cases is also misclassified with no missing data, and
had no chance of being correctly assigned with fewer
variables. The remaining misclassification involves
LATSUPRI and BIEPI. Since these two variables
are also missing in three other correctly classified
cases, no generalizations are possible here either.
The only relevant message is that even with key
splitting variables missing, a high percentage of
cases are correctly classified.

DISCUSSION

The differences in results between traditional
LDA and nonparametric binary, recursive classifi-
cation trees are relatively small here. In the homi-
noid sample, classification trees have a slight (but
insignificant) advantage in classifying the full data
set, while LDA has a slight (but insignificant) ad-
vantage under 10-fold cross-validation. The similar-
ity of results begs an important question: when or
why should we choose binary recursive trees over
LDA? If our data fail to meet the requirements for
LDA, then we cannot be confident in the classifica-
tions it produces, unless we compare them with re-
sults from another technique that requires either
fewer or different assumptions. In principle, only
then can we decide which technique best fits the
data. The importance of the above cannot be over-
stated. To use LDA for classification, researchers are
obliged to test their data for conformity to normal-
theory assumptions. If the data meet the necessary
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conditions, there is nothing to be gained by using a
less powerful nonparametric technique. If the data
do not meet LDA’s requirements, then the re-
searcher should consider alternatives.

What happens if data do not meet the assump-
tions necessary for LDA, but when both LDA and
classification trees yield similar results, as they do
here? As it happens in the hominoid data set, nei-
ther approach trumps the other: BFOS is slightly
better under resubstitution; LDA is better under
cross-validation. Since both give excellent fits to the
data, it probably doesn’t matter which we choose,
but power considerations favor the parametric
model. With poorer fits, another procedure might be
required to sort out subtle differences. Steinberg
and Colla (1997) suggested combining the canonical
variates (from LDA) with the raw predictor vari-
ables for each case into a single data set. They then
subjected the combined data to a classification tree
analysis, using the BFOS algorithm. If the canonical
variates are unimportant, they will not be key split-
ting variables in the resulting tree. This favors the
original binary tree results. On the other hand, if the
canonical variates are key splitters while few, if any,
original variables participate, then LDA is the best
choice.

I performed Steinberg and Colla’s (1997) tests by
combining the 10 original humerus variables with
the 3 canonical variates generated by LDA. Not sur-
prisingly, the first two canonical variates are pri-
mary splitter variables at 3 of 4 major branches on
the classification tree. Of the original variables, only
HUMLENGT contributes to the new tree. This
strengthens the case for LDA. The combined tree
resolves the data in fewer terminal nodes (5 vs. 7),
and is more accurate (93% resubstitution accuracy,
and 87% cross-validated accuracy) than either anal-
ysis involving only the raw data. This suggests that
LDA is the appropriate technique for these data. It
also supports the assertion that LDA is robust to
violations of required assumptions. This is precisely
how Johnson and Wichern (1998, p. 665) defined
robustness, as “the [resistance to] deterioration in
error rates caused by using a classification proce-
dure with data that do not conform to the assump-
tions on which the procedure was based.” It is tempt-
ing to conclude that LDA is sufficiently robust for all
classification problems, but we cannot use this to
avoid testing the data. This claim is cannot be sub-
stantiated without the comparative analysis.

When predictor variables are missing, the answer
is more complicated. Classification trees make no
demands on the researcher confronted with an in-
complete data set. If the missing values are not
primary splitters, their status is irrelevant. The sur-
rogates get used only when a primary splitting vari-
able is unavailable. Classification results would not
change, even if we had deleted every nonprimary
splitting variable. The advantage of surrogacy is
that the algorithm can recover if it encounters a
missing primary variable. With strong concordance
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TABLE 8. Classification tree analysis, using randomly selected cases with randomly assigned missing value combinations

Case Correct Classification in Classification with
number?! classification full analysis missing values?® Missing variables

5 Gorilla Gorilla Gorilla MEDEPICO,
OLECRDEP, BIEPI

10 Gorilla Gorilla Gorilla HUMLENGT, BIEPI,
MEDEPICO

12 Gorilla Gorilla Gorilla LATSUPRI,
HUMLENGT

20 Gorilla Gorilla Gorilla LATSUPRI,
HUMLENGT

33 Gorilla Gorilla Gorilla LATSUPRI, BIEPI

39 Gorilla Gorilla Gorilla MEDEPICO, BIEPI

42 Gorilla Gorilla Gorilla MEDEPICO, BIEPI

43 Gorilla Gorilla Gorilla HUMLENGT, BIEPI,
MEDEPICO

57 Pan Pan Pan LATSUPRI, BIEPI

60 Pan Pan Pan HUMLENGT, BIEPI,
MEDEPICO

63 Pan Pan Pan HUMLENGT, BIEPI,
MEDEPICO

75 Pan Pan Homo LATSUPRI,
HUMLENGT

80t Pan Homo Homo LATSUPRI, BIEPI

108 Pongo Pongo Pan LATSUPRI,
HUMLENGT

121 Gorilla Gorilla Gorilla LATSUPRI,
HUMLENGT

140 Pan Pan Pan MEDEPICO,
OLECRDEP, BIEPI

151 Pongo Pongo Pongo LATSUPRI,
HUMLENGT

164 Pan Pan Pan LATSUPRI, BIEPI

189 Pan Pan Pan MEDEPICO,
OLECRDEP, BIEPI

191 Pan Pan Pan HUMLENGT

204 Gorilla Gorilla Gorilla MEDEPICO, BIEPI

211 Gorilla Gorilla Gorilla MEDEPICO, BIEPI

213 Gorilla Gorilla Gorilla MEDEPICO,
OLECRDEP, BIEPI

226 Homo Homo Pan LATSUPRI,
HUMLENGT

228 Homo Homo Homo MEDEPICO, BIEPI

! Case was also misclassified when all variables were present.

2 Classifications come from dropping cases with missing values down the original rpart tree generated from the full data set.

between a primary splitter and its surrogate(s),
there is a good chance for correct classification.
Moreover, since surrogates are selected on the basis
of concordance and not correlation with the primary
splitter, unrelated or weakly related variables may
be surrogates for each other. This makes it more
likely to find a reasonable surrogate. For this reason
alone, classification trees are very attractive for data
with incompletely observed predictors.

Missing predictor data complicate analysis via
LDA. Since no conventional discriminant analysis
program will use cases with incompletely observed
predictor variables, the researcher who wants to
maximize the “classification return” on limited data
must use some form of data imputation. Regardless
of the approach used for data imputation, the impu-
tation step always precedes LDA.® Evidence is build-
ing that modern imputation techniques are capable

SExcept for mean substitution, which can occur in tandem with the
LDA.

of giving good estimates for missing values in cer-
tain circumstances (Schafer, 1997; Schimert et al.,
2000). When researchers deal with fossil remains,
classification is uncertain, the fraction of cases with
missing values can be high, and the choice of a
reference population can bias classification a priori.
If the investigator chooses not to impute, the only
LDA alternative is to reconfigure the analysis into a
series of discriminants based on separate pieces of
the data sets, as Stringer (1974) and Kidder et al.
(1992) did. There is nothing inherently wrong with
this strategy, but drawing inferences or conclusions
from combining serial LDAs may introduce multiple
comparison problems that inflate significance levels
(e.g., Hsu, 1996). In either instance (imputation or
serial discriminants), additional statistical testing is
required to assess the results. By contrast, binary
recursive trees not only allow the researcher to side-
step the missing values problem altogether, but they
are actually designed for dealing with large data
sets containing substantial amounts of missing
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data. A data set with missing values is an ideal
candidate for classification trees, which a simple
example illustrates.

The Stringer’s (1974) set of hominoid cranial mea-
surements from 131 Homo erectus, archaic Homo
sapiens, Neanderthals, and anatomically modern
Homo sapiens presents an interesting test of the
power of classification trees. Using the first 9 mea-
surements in this collection (GOL, NOL, BNL, BBH,
XCB, XFB, AUB, ASB, and BPL) and response vari-
ables (taxonomic assignments) provided by Stringer
(1974), only 54 cases are available for LDA; the
remaining 77 are missing one or more measurement
and are deleted casewise. Of the 54 cases, 46 are
“modern,” and LDA misclassifies only one of these;
the remaining 8 cases fall in three other groups, and
only two cases are correctly classified. By contrast,
rpart assigns all 131 cases. Using surrogate vari-
ables, rpart correctly assigns 65% (85 individuals) of
the cases, including the same 45 modern humans
that LDA assigned correctly. Thus, while rpart han-
dles modern specimens in exactly the same way as
LDA, it improves the classification significantly by
properly assigning an additional 40 (of 77) cases
that standard LDA implementations delete. Not
surprisingly, misclassifications occur with speci-
mens missing the largest number of predictors, but
classification accuracy could be improved by includ-
ing additional measurements.

CONCLUSIONS

The analysis performed here demonstrates sev-
eral important points: 1) data subjected to predictive
LDA should always be tested for normality prior to
analysis; 2) LDA is an extraordinarily robust tech-
nique that should be the first tool used for classifi-
cation if there are complete data sets that are ap-
proximately normal; 3) nonparametric classification
trees that use the BFOS algorithm yield excellent
results that compare favorably to (or do better than)
LDA with training data, and only slightly worse
under rigorous cross-validation; and 4) the BFOS
algorithm works well on data sets with incomplete
observations without requiring data imputation. As
demonstrated, even with crucial splitting variables
missing from the analysis, the binary tree technique
of using surrogate splitting variables allows a re-
markably high percentage of cases to be correctly
classified.

This leads me to recommend classification trees as
an alternative or an adjunct to LDA in two in-
stances. In the first, I recommend it whenever mul-
tivariate data depart from the essential normal-the-
ory assumptions of -classificatory LDA. When
classification trees provide better cross-validated
predictions than discriminant analysis, or when raw
variables perform better than the canonical variates
in a combined tree-structured analysis, I would re-
port the classification tree results, not those from
LDA. Either way, however, there is an additional
analytical burden for the researcher, but modern
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software makes this straightforward. Unless these
steps are taken, there is no way to assess the pre-
dictions resulting from an LDA of nonnormal data.

In the second case, I would strongly recommend
classification trees instead of LDA whenever data
sets are missing significant information, as they
would be with fossils. This is not to discourage re-
searchers from using modern data imputation tech-
niques, but those who use these procedures (espe-
cially with fossils) have a special responsibility to
understand how the imputations are obtained, and
ask whether they make sense. The advantage of
binary trees is that investigators are freed from
these obligations and also from the need to defend
the “sensibleness” of “filled in” values for fossils lack-
ing an adequate reference population from which to
develop imputations. Instead, researchers can con-
centrate on the meaning of class assignments in the
context of observed (and defensible) data.
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Summarized output directly from rpart for Iris example. Nodes correspond to numbered entries on Figure 2. “Split”
represents number of cases assigned to node, “loss” represents number of misclassified cases

adjusted for prior information, “yval” is classification given to node if it were terminal, and “yprob” represents Bayesian probabilities

(explained in text) of each group. * Signifies a terminal node.

node), split, n, loss, yval,

* denotes terminal node

(yprob)
1) root 75 50.000000 setosa
2) petlength<2.5 28

6) petlength<4.85 21
7) petlength>=4.85 26

0.000000 versicolor
1.136364 virginica

(0.33333333 0.33333333 0.33333333)
0.000000 setosa (1.00000000 0.00000000 0.00000000) *
3) petlength»>=2.5 47 25.000000 virginica

(0.00000000 0.50000000 0.50000000)
(0.00000000 1.00000000 0.00000000) *
(0.00000000 0.04347826 0.95652174) *
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Appendix 2. Node details for all Iris splits. This expands information provided in summary. This example is unusual because
either Petal Length or Petal Width produce identical (smallest) Gini diversity indices and identical improvement scores for the primary
split. In this rare circumstance, the program chooses predictors alphabetically.
Xerror xstd

CP nsplit rel error

1 0.5000000
2 0.4772727
3 0.0100000

Node number 1:

predicted class=

class counts:
probabilities:
left son=2
Primary splits:

0 1.00000000
1 0.50000000
2 0.02272727

75 observations,

(28 obs)

1.20467532 0.07127029
0.80922078 0.09055846
0.08545455 0.04166163

complexity param=0.5

setosa expected loss=0.6666667
28 22 25

0.333 0.333 0.333

right son=3 (47 obs)

petlength < 2.5 to the left, improve=25.00000, (0 missing)
petwidth < 0.8 to the left, improve=25.00000, (0 missing)
seplength < 5.45 to the left, improve=19.46643, (0 missing)
sepwidth < 3.35 to the right, improve=10.26949, (0 missing)
Surrogate splits:
petwidth < 0.8 to the left, agree=1.000, adj=1.000, (0 split)
gseplength < 5.45 to the left, agree=0.947, adj=0.857, (0 split)
sepwidth <« 3.35 to the right, agree=0.827, adj=0.536, (0 split)
Node number 2: 28 observations
predicted class=setosa expected loss=0

class counts:
probabilities:

Node number 3: 47

predicted class=

class counts:
probabilities:
left son=6
Primary splits:

(21 obs)

28 0 0
1.000 0.000 0.000

observations,

virginica expected loss=0.5319149
0 22 25

0.000 0.500 0.500

right son=7 (26 obs)

complexity param=0.4772727

petlength < 4.85 to the left, improve=22.826090, (0 missing)
petwidth < 1.75 to the left, improve=22.826090, (0 missing)
seplength < 6 to the left, improve= 7.318278, (0 missing)
sepwidth <« 3.05 to the left, improve= 3.224007, (0 missing)
Surrogate splits:
petwidth < 1.6 to the left, agree=0.979, adj=0.952, (0 split)
seplength < 6 to the left, agree=0.787, adj=0.524, (0 split)
sepwidth < 2.75 to the left, agree=0.681, adj=0.286, (0 split)
Node number 6: 21 observations
predicted class=versicolor expected loss=0
class counts: 0 21 0

probabilities:

Node number 7: 26

predicted class=virginica

class counts:
probabilities:

0.000 1.000 0.000

observations

expected loss=0.04370629
0 1 25

0.000 0.043 0.957
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Appendix 3. Statistical details associated with classification tree in Figure 6. For explanation, see Materials and Methods.

CP nsplit rel error xXerror xstd
1 0.29752275 0 1.0000000 1.1572598 0.06812347
2 0.17628205 2 0.4049545 0.6513108 0.07259214
3 0.03488372 3 0.2286724 0.3676488 0.05315698
4 0.03365385 4 0.1937887 0.3212863 0.05285487
5 0.01000000 6 0.1264810 0.2971112 0.05543828
Node number 1: 237 observations, complexity param=0.2975228
predicted class=GORILLA expected loss=0.75
class counts: 86 24 104 23

probabilities: 0.250 0.250 0.250 0.250
left son=2 (76 obs) right son=3 (161 obs)
Primary splits:

biepi < 76.6 to the right, improve=46.39846, (0 missing)
humlengt < 336.5 to the right, improve=46.18487, (0 missing)
mlhttroc < 30.65 to the right, improve=41.48050, (0 missing)
antartbr < 51.1 to the right, improve=39.38355, (0 missing)
latsupri < 117.35 to the left, improve=38.64198, (0 missing)

Surrogate splits:

mlhttroc < 31.925 to the right, agree=0.958, adj=0.868, (0 split)
antartbr < 52.95 to the right, agree=0.949, adj=0.842, (0 split)
humlengt < 367.5 to the right, agree=0.928, adj=0.776, (0 split)
aphttroc < 18.65 to the right, agree=0.924, adj=0.763, (0 split)
olecrdep < 16.25 to the right, agree=0.920, adj=0.750, (0 split)

Node number 2: 76 observations
predicted class=GORILLA expected loss=0.03389588
class counts: 75 0 0 1
probabilities: 0.953 0.000 0.000 0.047

Node number 3: 161 observations, complexity param=0.2975228
predicted class=HOMO expected loss=0.7670957
class counts: 11 24 104 22

probabilities: 0.041 0.324 0.324 0.310
left son=6 (139 obs) right son=7 (22 obs)
Primary splits:

latsupri < 117.05 to the left, improve=49.41500, (0 missing)
humlengt < 329.5 to the left, improve=35.94438, (0 missing)
pdhtcapi < 25.15 to the left, improve=31.64261, (0 missing)
mlhttroc < 30.3 to the left, improve=21.27751, (0 missing)
antartbr < 47.8 to the left, improve=20.13675, (0 missing)

Surrogate splits:

pdhtcapi < 25.15 to the left, agree=0.932, adj=0.500, (0 split)
humlengt < 350.5 to the left, agree=0.913, adj=0.364, (0 split)
mlhtcapi < 20.15 to the left, agree=0.888, adj=0.182, (0 split)
mlhttroc < 32 to the left, agree=0.876, adj=0.091, (0 split)
antartbr < 54.17 to the left, agree=0.876, adj=0.091, (0 split)
Node number 6: 139 observations, complexity param=0.1762821
predicted class=PAN expected loss=0.4815527
class counts: 11 23 104 1

probabilities: 0.060 0.450 0.470 0.020
left son=12 (69 obs) right son=13 (70 obs)
Primary splits:
humlengt < 300.5 to the right, improve=19.491080, (0 missing)

(continued)
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Appendix 3. (continued)
olecrdep < 11.95 to the left, improve= 7.797573,
mlhttroc < 30.75 to the right, improve= 7.753742,
biepi < 70.85 to the right, improve= 5.718158,
antartbr < 51.05 to the right, improve= 5.263866,
Surrogate splits:
pdhtcapi < 21.68 to the right, agree=0.683, adj=0.
antartbr < 44.65 to the right, agree=0.676, adj=0.
biepi < 58.65 to the right, agree=0.669, adj=0.
aphttroc < 15.65 to the right, agree=0.662, adj=0.
mlhttroc < 27.35 to the right, agree=0.662, adj=0.

Node number 7:

predicted class=PONGO

class counts:
probabilities:

Node number 12:

class counts:
probabilities:

69 observations,
predicted class=HOMO

22 observations

expected loss=0.1122159
0 1 0 21
0.000 0.044 0.000 0.956

expected loss=0.4444086
11 21 36 1
0.092 0.628 0.249 0.031

o~

left son=24 (9 obs) right son=25 (60 obs)

Primary splits:
mlhttroc < 30.75 to the right, improve=8.597229,
olecrdep < 13.05 to the left, improve=7.565060,
humlengt < 337.5 to the right, improve=7.413283,
antartbr < 42.9 to the left, improve=6.344064,
biepi < 69.745 to the right, improve=5.939034,

Surrogate splits:
humlengt < 341 to the right, agree=0.971, adj=0
biepi < 71.05 to the right, agree=0.971, adj=0.
antartbr < 51.05 to the right, agree=0.957, adj=0.
latsupri < 72.11 to the left, agree=0.899, adj=0.
medepico < 15.5 to the right, agree=0.899, adj=0.

Node number 13:

predicted class=PAN

class counts:
probabilities:

Node number 24:

class counts:
probabilities:

Node number 25:

predicted class=HOMO

class counts: 2 21 36 1

probabilities: 0.018 0.679 0.269 0.034

left son=50 (25 obs) right son=51 (35 obs)

Primary splits:
olecrdep < 13.05 to the left, improve=6.972128, (0
antartbr < 42.9 to the left, improve=5.279082, (0
humlengt < 321 to the right, improve=5.000037, (0O
mlhtcapi < 17.05 to the left, improve=3.864870, (0
biepi < 60.45 to the left, improve=3.665587, (0

Surrogate splits:
antartbr < 42.25 to the left, agree=0.750, adj=0.40,

60 observations,

70 observations

expected loss=0.07053571
0 2 68 0
0.000 0.113 0.887 0.000

9 observations
predicted class=GORILLA

expected loss=0
9 0 0 0
1.000 0.000 0.000 0.000

expected loss=0.4077268

ol olNeloelNo]

77
77
66
22
22

missing)
missing)
missing)
missing)
2, (0 split)
8, (0 split)
3, (0 split)
9, (0 split)
9, (0 split)

complexity param=0.03488372

missing)
missing)
missing)
missing)
missing)

8, |
8, |
7,
2,
2,

o O o oo

complexity param=0.03365385

missing
missing

missing

)
)
missing)
)
missing)

(0 split)

(continued)
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Appendix 3. (continued)

mlhttroc < 25.5 to the left, agree=0.733, adj=0.36, (0 split)
biepi < 60.85 to the left, agree=0.733, adj=0.36, (0 split)
mlhtcapi < 16.65 to the left, agree=0.700, adj=0.28, (0 split)
latsupri < 79.225 to the left, agree=0.650, adj=0.16, (0 split)
Node number 50: 25 observations
predicted class=HOMO expected loss=0.2853512
class counts: 0 16 8 1
probabilities: 0.000 0.847 0.098 0.055
Node number 51: 35 observations, complexity param=0.03365385
predicted class=PAN expected loss=0.3920473
class counts: 2 5 28 0
probabilities: 0.046 0.416 0.538 0.000
left son=102 (14 obs) right son=103 (21 obs)
Primary splits:
humlengt < 317 to the right, improve=7.798651, (0 missing)
biepi < 64.04 to the right, improve=5.593440, (0 missing)
medepico < 11.95 to the right, improve=4.793755, (0 missing)
latsupri < 93.85 to the right, improve=4.705908, (0 missing)
mlhtcapi < 18.53 to the right, improve=3.965978, (0 missing)

Surrogate splits:

medepico < 11.23 to the right, agree=0.771, adj=0.429, (0 split)
biepi < 64.04 to the right, agree=0.771, adj=0.429, (0 split)
latsupri < 103.5 to the right, agree=0.743, adj=0.357, (0 split)
pdhtcapi < 23.5 to the right, agree=0.743, adj=0.357, (0 split)
mlhtcapi < 18.53 to the right, agree=0.743, adj=0.357, (0 split)

Node number 102: 14 observations
predicted class=HOMO expected loss=0.3832777
class counts: 2 5 7 0
probabilities: 0.078 0.697 0.225 0.000

Node number 103: 21 observations
predicted class=PAN expected loss=0
class counts: 0 0 21 0
probabilities: 0.000 0.000 1.000 0.000



