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Abstract
The information content of atmospheric measurements in data assimilation
systems (DASs) is closely determined by the representation of the model
and observation error statistics. Evaluation of short-range forecast error
sensitivities to observation error variance and innovation-weight parame-
ters provides guidance to improve the system performance. A case study is
presented for various observing instruments assimilated in NASA’s GEOS.
Statistical analysis of data assimilation products indicates that, in general,
increasing the observation weight would improve the forecast skill.

Research Objectives
Optimal assimilation of high-resolution satellite data in NASA’s GEOS re-
quires an improved representation of observational error statistics. This
study presents the following diagnosis tools for DAS optimization:

1. A posteriori estimates to observation error covariance for radiances as-
similated in NASA’s GEOS with emphasis on hyper-spectral instruments

2. A priori estimates to the forecast error impact from tuning observation
error variance and innovation weight parameters in the DAS

3. Identification of high-impact geographical regions with increased fore-
cast error sensitivity

Results are shown for analyses valid at 00UTC June 2014 and 6hr forecasts.

1 A posteriori observation error variance
Observation error variance σ2o assigned in the DAS is often over conser-
vative (Figure 1). For each observation type, estimates σ̃2o of the true σ2o
are obtained a posteriori from the statistical expectation of observed minus
analysis doa and observation minus background (innovations) dob as [2]:

(σ̃2o) = E
[
(doa)

T(dob)
]

(1)

Figure 1: GEOS assigned σo and diagnostic estimates σ̃o (K) for IASI (left) and AIRS
(right) instruments. The a posteriori estimates indicate that the assigned σo values are
overly conservative.

Departure of σ̃2o from σ2o assigned in the DAS can be described with an
observation error variance weight parameter (so):

so =
σ̃2o
σ2o

(2)

where so = 1 represents the status quo configuration.

2 Innovation-weight parameterization
Direct tuning of the gain operator K can be done by introducing the
innovation-weight parameter sb into the analysis equation:

xa(sb) = xb +K [sb ◦ (y −Hxb)] (3)

where y −Hxb is the innovation vector and sb = 1 represents the status
quo configuration.

3 Forecast error sensitivity and impact

The forecast score can be defined as a short-range forecast error measure[1]:

e(xa) =
(
xaf − xvf

)T
C
(
xaf − xvf

)
(4)

where xaf is the model forecast at verification time tf initiated from xa, xvf
is the verifying analysis at tf , which serves as a proxy to the true state xtf ,
and C is a diagonal matrix of weights that gives the forecast score units of
energy per unit mass.

3.1 Sensitivity to σ2o-weight parameters
Forecast error sensitivity to the observation error variance parameter so is:

∂e

∂so
= [Hxa − y] ◦ ∂e

∂y
(5)

where xa is the analysis state in the status quo DAS and

∂e

∂y
= KT ∂e

∂xa
(6)

is the forecast error sensitivity to observations that is obtained by applying
the adjoint-DAS operator KT to the forecast error sensitivity to analysis. [1]

A note on sensitivity guidance:

• Positive σ2o-weight sensitivities identify observation system components
that may benefit from reducing the assigned observation error variance.

•Negative σ2o-weight sensitivities identify observation system components
that may benefit from increasing the assigned error variance.

3.2 Sensitivity to innovation-weight parameters
The forecast error sensitivity to innovation-weight parameters sb is defined
as the element-wise product between the innovation vector and observation
sensitivity:

∂e

∂sb
=
[
y −Hxb

]
◦ ∂e
∂y

(7)

In general, the forecast error so- and sb-sensitivities are anti-correlated.

In the case study presented here the forecast error displays positive sensi-
tivity to observation error variance weight factor and negative sensitivity to
innovation weight factor (Figure 2).

Figure 2: Observation system components that exhibit large forecast error sensitivities to
observation error variance (left) and innovation weight parameters (right). Increasing the
weight of information provided by the radiances would improve the forecast skill.

3.3 A priori impact of tuning observation error variance
An a priori forecast impact estimate of adjusting σ2o to σ̃2o is given by:

δe =
∂e

∂so
◦ δso =

∂e

∂so
◦

(
σ̃2o
σ2o
− 1

)
(8)

Impact estimates indicate that, in general, tuning the observation error vari-
ance improves forecast skill (Figure 3). Note that some instruments chan-
nels, such as AIRS short-wave temperature soundings (1897 to 1928), ben-
efit from increasing the observation error variance. DAS performance may
be optimized, therefore, by tuning individual channels rather than instru-
ments as a whole.

Figure 3: Forecast error sensitivity and a priori impact estimates for IASI (METOP-A)
and AIRS (Aqua) instruments. The guidance is that for most channels, forecasts will ben-
efit from reducing the assigned σo values.

Error variance sensitivity and subsequent forecast error impacts are not
globally uniform. The AIRS instrument, for example, is highly sensitive
in the tropics over the East Pacific (Figure 4). Spatially variable tuning of
weight parameters may enhance forecast error reduction.

Figure 4: Geographic distribution of σo sensitivity (left) and forecast error impact (right)
for AIRS long-wave CO2 channels 156 to 256 assimilated in GEOS.

4 Conclusions
• A posteriori consistency analysis suggests the assigned observation error

variance is overly conservative in the GEOS.

•Adjoint-DAS sensitivity guidance indicates that, in general, increasing
the observation weight would improve the forecast skill.

•Despite general trends error sensitivities are not uniform among instru-
ment channels nor geographical locations, which may impair the forecast
performance of error covariance tuning procedures.

• Therefore, novel adaptive tuning approaches that account both for in-
strument characteristics and the variability of forecast errors in the
time/space domain are necessary.

5 Forthcoming Research
This case study examined a posteriori diagnosis tools for optimizing
NASA’s GEOS by tuning observation error variance and innovation-weight
parameters. Diagnosis tools have also been developed to account for ob-
servation error correlations (Figure 5). Future research will examine: 1.)
A posteriori guidance for tuning observation and background error covari-
ance in GEOS and 2.) Adaptive error covariance tuning experiments to
validate a priori forecast error impact estimates.

Figure 5: Inter-channel correlations for IASI (left) and AIRS (right) instruments. For both
instruments airs water vapour channels exhibit strongest correlations
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