Time Series Asymptotics

Time series as a stochastic process
must satisfy the property of
stationarity and ergodicity



Stationarity

* Atime series process {z;} is (strongly)
stationary if the joint probability distribution
of any set of k observations in the sequence
{z,2.,1,--,2,,, 1} 1S the same regardless of the
origin, i, in the time scale.



Stationarity

* Atime series process {z;} is covariance

stationary or weakly stationary if E(z)) = nis
finite and is the same for all i; and if the
covariance between any two observations,
Cov(z,z,,) =V, is a finite function only of
model parameters and their distance apart in
time k, but not the absolute location of either
observation on the time scale.

Tk = Yk



Ergodicity

* A stationary time series process {z } is ergodic
if for any two bunded functions that map
vectors in the a and b dimensional real vector
spaces to real scalars, f: R%=—=> R and g: R°P> R,

Ilm‘E l: f (Zi 1 Zi+1""’ Zi+a—1) g (Zi+k , Zi+k+1""’ Zi+k+b—1):H
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Ergodic Theorem

* If {z}is a time series process that is stationary

and ergodic and E[|z] is a finite constant,

and if

7 —is, then Z, —.. 1, where 1 =E(z,)

n i=1 | !

n



Ergodicity of Functions

* If{z;} is a time series process that is stationary and
ergodic and if y, = f(z,) is a measurable function in the
probability space that defines z, then {y.} is also
stationary and ergodic.

* Let {Z} define a Kx1 vector valued stochastic
process—each element of the vector {z } is an ergodic
and stationary series, and the characteristics of
ergodicity and stationarity apply to the joint
distribution of the elements of {Z }. Then, the ergodic
theorem applies to functions of {Z}.



Martingale Sequence

* Avector sequence {Z;} is a martingale
sequence if E(Z,|Z ,,Z ,,...) = Z.

* Avector sequence {Z;} is a martingale
difference sequence (m.d.s) if E(Z,|Z ,Z ,,...) =
0.



Martingale Difference CLT

* If {Z}is a vector valued stationary and ergodic
martingale difference sequence, with E(ZZ/) =
>, Where X is a finite positive definite matrix,

and if
Z :lz_n_lzi,then JnZ, —, N(0,%)
n“<'"



Gordin’s CLT

* If {Z}is stationary and ergodic and if the
following three conditions are met, then

vnZ, —, N, 1)
where I'” = limVar (»\/nZ_n)

N—>oo

— 1. Asymptotic uncorrelatedness:
E(z.|Z,Z, ,,---) cOnverges in mean squares to
zero as k —>ee.



Gordin’s CLT

— 2. Summability of autocovariances:
With dependent observations, the following
covariance matrix is finite.

IimVar(\/ﬁZ_) ZZCOV(Z,,Z) ZF =T

N—o0 i—0 J 0

In particular, E(ZZ) = Iy, a finite matrix.



Gordin’s CLT

— 3. Asymptotic negligibility of innovations:
The information eventually becomes negligible as
it fades far back in time from the current
observation.

Let r.ik = E(ZI |Zi—k’Zi—k—1"")_ E(ZI |Zi—k—1’Zi—k—2"")’

then Z, = > r, and > \JE(r,r,) is finite
k=0 k=0




Time Series Asymptotics

* Linear Model:y,=xB + ¢ (i=1,2,...,n)
* Least Squares Estimation

— b = (X'X)X'y =B + (XX/n)1(Xe/n)

— E(b) = B + (X'X/n)1E(X'e/n) = B

— Var(b) = (X'X/n) 1 E[(X‘e/n)(X‘e/n)](X'X/n)1
= (XX)HX‘QX)(X'X)! where Q = E(gg')



Time Series Asymptotics

* We assume the stochastic process generating
{x.} is stationary and ergodic, then by ergodic
theorem, lim__,_ 2. xx.'/n = E(x. x.') is finite

* If ¢ is not serially correlated, then g.=x¢. is a
m.d.s, so

—lim__, 2. x&/n=E(xe)=E(g)=0
—lim,_,, 2 xx'gg;/n = E(g;g') = Var(g;) is finite
 Therefore, b is consistent!



Time Series Asymptotics

* If {x,& } are jointly stationary and ergodic, then
by ergodic theorems, consistency of the
parameter estimates can be established.

* If ¢ is not serially correlated, then by
I\/Iartmgale Difference CLT,

Z .0, then V/ng, —, N(0, ) where £ = X QX

. If € |s serially correlated and dependence in
X, then by Godin’s CLT,

Jﬁgn —, N(0,T"), where I = IimVar(\/ﬁgn)
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