OLS: Theoretical Review

- Assumption 1: Linearity

$$
\begin{aligned}
& -\mathrm{y}=\mathbf{x}^{\prime} \boldsymbol{\beta}+\varepsilon(\text { or } \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \\
& \quad \text { (where } \mathbf{x}, \boldsymbol{\beta}: \text { Kx1) }
\end{aligned}
$$

- Assumption 2: Exogeneity
$-\mathrm{E}(\boldsymbol{\varepsilon} \mid \mathbf{X})=0$
$-\mathrm{E}(\mathbf{x} \varepsilon)=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}} \mathbf{x}_{\mathrm{i}} \varepsilon_{\mathrm{i}} / \mathrm{n}=\lim _{\mathrm{n} \rightarrow \infty} \mathbf{X}^{\prime} \varepsilon / \mathrm{n}=0$
$-\operatorname{Var}(\mathbf{x} \varepsilon)=\mathrm{E}\left(\mathbf{x x}^{\prime} \varepsilon^{2}\right)=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}} \mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}{ }^{\prime} \varepsilon_{\mathrm{i}}{ }^{2} / \mathrm{n}$

OLS: Theoretical Review

- Assumption 3: No Multicolinearity
$-\operatorname{rank}(\mathbf{X})=\mathrm{K}$
$-\mathrm{E}\left(\mathbf{x x}^{\prime}\right)=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}} \mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}{ }^{\prime} / \mathrm{n}=\lim _{\mathrm{n} \rightarrow \infty} \mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}$
$-\operatorname{plim} \mathbf{X}^{\prime} \mathbf{X} / n$ exists and nonsingular

OLS: Theoretical Review

- Non-Spherical Disturbances: General Heteroschedasticity

$$
\begin{aligned}
& -\operatorname{Var}(\boldsymbol{\varepsilon})=\boldsymbol{\Omega} \\
& -\operatorname{Var}(\mathbf{x} \boldsymbol{\varepsilon})=\mathrm{E}\left(\mathbf{\mathbf { x x } ^ { \prime } \varepsilon ^ { 2 }) = \operatorname { l i m } _ { \mathrm { n } \rightarrow \infty } \mathbf { X } ^ { \prime } \boldsymbol { \Omega } \mathbf { X } / \mathbf { n }}\right. \\
& -\mathbf{X}^{\prime} \boldsymbol{\varepsilon} / \sqrt{\mathrm{n}} \rightarrow \mathrm{~d}^{\mathrm{d}} N\left(\mathbf{0}, \mathbf{X}^{\prime} \boldsymbol{\Omega} \mathbf{X} / \mathbf{n}\right) \\
& \Omega=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
\end{aligned}
$$

OLS: Theoretical Review

- Assumption 4: Homoschedasticity and No Autocorrelation
$-\operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$
$-\operatorname{Var}(\mathbf{x} \varepsilon)=\mathrm{E}\left(\mathbf{x x}^{\prime} \varepsilon^{2}\right)=\lim _{\mathrm{n} \rightarrow \infty} \sigma^{2} \mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}$
$-\mathbf{X}^{\prime} \boldsymbol{\varepsilon} / V_{\mathrm{n}} \rightarrow{ }^{\mathrm{d}} N\left(\mathbf{0}, \sigma^{2} \mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}\right)$

OLS: Theoretical Review

- Least Squares Estimator
$-\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$
- Variance-Covariance Matrix of b
- General Heteroscedasticity: $\operatorname{Var}(\mathbf{b})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
- Homoschedasticity: $\operatorname{Var}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$

OLS: Theoretical Review

- Least Squares Estimator
$-\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{y} / \mathrm{n}\right)$
$-\mathbf{b}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}\right)^{-1}\left(\mathbf{X}^{\prime} \varepsilon / \mathrm{n}\right), \mathbf{b} \rightarrow{ }^{\mathrm{p}} \boldsymbol{\beta}$
$-V_{\mathbf{n}}(\mathbf{b}-\boldsymbol{\beta})=\left(\mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}\right)^{-1}\left(\mathbf{X}^{\prime} \varepsilon /{ }^{\prime} \mathrm{n}\right)$
$-V_{\mathbf{n}}(\mathbf{b}-\boldsymbol{\beta}) \rightarrow{ }^{\mathrm{d}} N\left(\mathbf{0}, \mathbf{A}^{-1} \mathbf{B A}^{-1}\right)$
$\mathbf{A}=\mathrm{E}\left(\mathbf{x x}^{\prime}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathbf{X}^{\prime} \mathbf{X} / \mathrm{n}$
$\mathbf{B}=\mathrm{E}\left(\mathbf{x x}^{\prime} \varepsilon^{2}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathbf{X} \mathbf{\prime} \boldsymbol{\Omega} \mathbf{X} / \mathrm{n}$
$-V_{\mathbf{n}}(\mathbf{b}-\boldsymbol{\beta}) \rightarrow{ }^{\mathrm{d}} N\left(\mathbf{0}, \sigma^{2} \mathbf{A}^{-1}\right)$ under homoschedasticity

OLS: Theoretical Review

- Asymptotic Normality
$-\mathbf{b} \sim^{\mathrm{a}} N\left(\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathbf{\prime}} \mathbf{\Omega} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
$-\mathbf{b} \sim^{\mathrm{a}} N\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$ under homoschedasticity
- The unknown Ω or σ^{2} needs to be consistently estimated.

OLS: Theoretical Review

- Estimate of Asymptotic Var(b)
- Under Homoschedasticity

$$
\begin{aligned}
& \hat{\operatorname{Var}}(\mathbf{b})=\hat{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& \text { where } \hat{\sigma}^{2}=\sum_{i=1}^{n} \hat{\mathbf{\varepsilon}}_{i}^{2} /(n-K) \rightarrow \sigma^{2} \\
& \hat{\varepsilon}_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \mathbf{b}
\end{aligned}
$$

OLS: Theoretical Review

- Estimate of Asymptotic Var(b)
- White Estimator (Heteroschedasticity-Consistent Estmate of Asymptotic Covariance Matrix)

$$
\begin{aligned}
& \hat{\operatorname{Var}}(\mathbf{b})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left[\frac{n}{n-K} \sum_{i=1}^{n} \hat{\boldsymbol{\varepsilon}}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right]\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& \text { where } \sum_{i=1}^{n} \hat{\boldsymbol{\varepsilon}}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} \rightarrow \mathbf{X}^{\prime} \Omega \mathbf{X} \\
& \hat{\varepsilon}_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \mathbf{b}
\end{aligned}
$$

OLS: Theoretical Review

- GLS (Generalized Least Squares)
- If Ω is known and nonsingular, then

$$
\Omega^{-1 / 2} \mathbf{y}=\Omega^{-1 / 2} \mathbf{X} \boldsymbol{\beta}+\Omega^{-1 / 2} \boldsymbol{\varepsilon} \text { or }
$$

$$
\mathbf{y}^{*}=\dot{\mathbf{X}}^{*} \boldsymbol{\beta}+\boldsymbol{\varepsilon}^{*}
$$

$-\mathrm{E}\left(\boldsymbol{\varepsilon}^{*} \mid \mathbf{X}^{*}\right)=0, \mathrm{E}\left(\varepsilon^{*} \varepsilon^{*} \mid \mathbf{X}^{*}\right)=\mathbf{I}$
$-\mathbf{b}_{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \mathbf{y}$
$-\operatorname{Var}\left(\mathbf{b}_{\mathrm{GLS}}\right)=\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1}$
$-\mathbf{b}_{\mathrm{GLS}} \sim^{\mathrm{a}} N\left(\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1}\right)$

Example

- U. S. Gasoline Market, 1953-2004
- EXPG = Total U.S. gasoline expenditure
- PG = Price index for gasoline
$-\mathrm{Y}=$ Per capita disposable income
- Pnc = Price index for new cars
- Puc $=$ Price index for used cars
$-\mathrm{Ppt}=$ Price index for public transportation
$-\mathrm{Pd}=$ Aggregate price index for consumer durables
$-\mathrm{Pn}=$ Aggregate price index for consumer nondurables
- Ps = Aggregate price index for consumer services
- Pop = U.S. total population in thousands

Example

- $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- $\mathbf{y}=\mathrm{G} ; \mathbf{X}=[1 \mathrm{PG} \mathrm{Y}]$ where $\mathrm{G}=(\mathrm{EXPG} / \mathrm{PG}) / \mathrm{POP}$
- $\mathbf{y}=\ln (\mathrm{G}) ; \mathbf{X}=[1 \ln (\mathrm{PG}) \ln (\mathrm{Y})]$
- Elasticity Interpretation

