
Instrumental Variables 

Based on Greene’s Note 13   



Instrumental Variables 

• Framework: y   =   X  +  , K variables in X. 

• There exists a set of K variables, Z such that  
 

           plim(Z’X/n)  0  but  plim(Z’/n) = 0 
 

 The variables in Z are called instrumental variables. 

• An alternative (to least squares) estimator of  is  
 

            bIV  =  (Z’X)-1Z’y 
 

• We consider the following: 
– Why use this estimator? 

– What are its properties compared to least squares? 

• We will also examine an important application 



IV Estimators 

Consistent 

 bIV = (Z’X)-1Z’y  

         = (Z’X/n)-1 (Z’X/n)β+ (Z’X/n)-1Z’ε/n 

         = β+ (Z’X/n)-1Z’ε/n  β 

Asymptotically normal (same approach to proof 
as for OLS) 

Inefficient – to be shown. 



LS as an IV Estimator 

The least squares estimator is  

       (X X)-1Xy  =  (X X)-1ixiyi   

                        =    + (X X)-1ixiεi  

If plim(X’X/n) = Q nonzero 

   plim(X’ε/n)  = 0  

Under the usual assumptions LS is an IV 
estimator  X is its own instrument. 



IV Estimation 

Why use an IV estimator?  Suppose that X and  
are not uncorrelated.  Then least squares is 
neither unbiased nor consistent. 

Recall the proof of consistency of least squares:   
 
      b  =    +  (X’X/n)-1(X’/n).   
 
Plim b =  requires plim(X’/n) = 0.  If this does 

not hold, the estimator is inconsistent. 



A Popular Misconception 

A popular misconception.  If only one variable in X is correlated with , the 
other coefficients are consistently estimated.  False.   

 

 

 

 

 

 

 
 

 

The problem is “smeared” over the other coefficients. 
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The General Result 

 

 

By construction, the IV estimator is consistent.  
So, we have an estimator that is consistent 
when least squares is not. 



Asymptotic Covariance Matrix of bIV 
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Asymptotic Efficiency 

Asymptotic efficiency of the IV estimator.  The 
variance is larger than that of LS.  (A large       
sample type of Gauss-Markov result is at work.) 

(1)  It’s a moot point.  LS is inconsistent. 

(2)  Mean squared error is uncertain: 

 

MSE[estimator|β]=Variance + square of bias. 

 

IV may be better or worse.  Depends on the data 



Two Stage Least Squares 

How to use an “excess” of instrumental variables 

(1)  X is K variables.  Some (at least one) of the K 

      variables in X are correlated with ε. 

(2)  Z is M > K variables.  Some of the variables in 

      Z are also in X, some are not.  None of the 

      variables in Z are correlated with ε. 

(3)  Which K variables to use to compute Z’X and 

      Z’y? 



Choosing the Instruments 

• Choose K randomly? 

• Choose the included Xs and the remainder randomly? 

• Use all of them?  How? 

• A theorem: (Brundy and Jorgenson, ca. 1972) There is a most 
efficient way to construct the IV estimator from this subset: 
– (1)  For each column (variable) in X, compute the predictions of that 

variable using all the columns of Z. 

– (2)  Linearly regress y on these K predictions. 

• This is two stage least squares 
 



Algebraic Equivalence 

• Two stage least squares is equivalent to 

– (1) each variable in X that is also in Z is replaced 
by itself. 

– (2) Variables in X that are not in Z are replaced by 
predictions of that X with all the variables in Z that 
are not in X. 



2SLS Algebra 
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Asymptotic Covariance Matrix for 2SLS 
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2SLS Has Larger Variance than LS 
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Implication for "precision" of 2SLS.

The problem of "Weak Instruments"



Estimating σ2 





   

2

2 n1
i 1 in

Estimating the asymptotic covariance matrix - 

a caution about estimating .

ˆSince the regression is computed by regressing y on ,

one might use 

ˆ                      (y )ˆ

This is i

2sls

x

x'b


   2 n1

i 1 in

nconsistent.  Use

                     (y )ˆ

(Degrees of freedom correction is optional. Conventional,

but not necessary.)

2sls
x'b



Measurement Error 

    y  =  x*  +    all of the usual assumptions 

 x  =  x*  +  u the true x* is not observed 
(education vs. years of school) 

What happens when y is regressed on x?  Least 
squares attenutation: 

cov(x,y) cov(x * u, x * )
plim b = 

var(x) var(x * u)

var(x*)
                          =  < 
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Why Is Least Squares Attenuated? 

y = x*  +   

x = x* + u 

y = x  +  ( - u) 

y = x  +  v, cov(x,v) = -  var(u) 

 

Some of the variation in x is not associated with 
variation in y.  The effect of variation in x on y 
is dampened by the measurement error. 



Measurement Error in Multiple 
Regression 
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Multiple regression: y = x * x *  

x *  is measured with error; x x * u

x  is measured without error.

The regression is estimated by least squares
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Popular myth #2. All coefficients are biased toward zero.

Result for the simplest case.  Let

cov(x *, x *),i, j 1,2 (2x2 covariance matrix)

 ijth element of the inverse of the covariance matrix
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The effect is called "smearing."



Twins 

      Application from the literature:  
Ashenfelter/Kreuger:  A wage equation that 
includes “schooling.” 



Orthodoxy 

• A proxy is not an instrumental variable 

 

• Instrument is a noun, not a verb 


