
Applications of the 

Generalized Regression 

Model 

 Based on Greene’s Note 16 



Two Step Estimation of the 

Generalized Regression Model 
    Use the Aitken (Generalized Least 

Squares - GLS) estimator with an estimate 

of  

 1.    is parameterized by a few estimable 

parameters.  Examples, the 

heteroscedastic model 

 2.  Use least squares residuals to estimate 

the variance functions 

 3.  Use the estimated  in GLS - Feasible 

GLS, or FGLS 



General Result for Estimation 

When  Is Estimated  

• True GLS uses   [X -1 X]X -1 y   which 

converges in probability to . 

• We seek a vector which converges to the 

same thing that this does.   Call it 

• FGLS, based on    [X    -1 X]X   -1 y     









FGLS 

Feasible GLS is based on finding an estimator which has 

the same properties as the true GLS. 

 Example Var[i]  =  2 Exp(zi). 

True GLS would regress  y/[ Exp((1/2)zi)]  

on the same  transformation of xi. 

With a consistent estimator of [,], say [s,c], we do the 

same computation with our estimates. 

So long as plim [s,c] = [,], FGLS is as good as true 

GLS. 



FGLS vs. Full GLS 

 

 

To achieve full efficiency, we do not need an 

efficient estimate of the parameters in , 

only a consistent one.  Why? 



Heteroscedasticity 

Setting:  The regression disturbances have unequal 
variances, but are still not correlated with each other: 

Classical regression with hetero-(different) scedastic 
(variance) disturbances. 

     yi  =  xi + i,  E[i]  =  0,  Var[i]  =  2 i, i > 0.   

The classical model arises if i = 1. 

A normalization:  i i = 1.  Not a restriction, just a scaling 
that is absorbed into 2. 

A characterization of the heteroscedasticity:  Well defined 
estimators and methods for testing hypotheses will be 
obtainable if the heteroscedasticity is “well behaved” in 
the sense that 

  i  / i i   0  as  n  .   

I.e., no single observation becomes dominant. 

  (1/n)i i   some stable constant.   

(Not a probability limit as such.) 



GR Model and Testing 

Implications for conventional estimation 

technique and hypothesis testing: 

1.  b is still unbiased.  Proof of 

unbiasedness did not rely on 

homoscedasticity 

2.  Consistent?  We need the more general 

proof.  Not difficult. 

3.  If plim b = , then plim s2  =  2  (with the 

normalization). 



Inference Based on OLS  

    What of s2(XX)-1 ?  Depends on XX - 

XX.  If they are nearly the same, the OLS       

covariance matrix is OK.  When will they 

be nearly the same?  Relates to an 

interesting      property of weighted 

averages.  Suppose i  is randomly drawn 

from a distribution with 

 E[i] = 1.  Then, (1/n)i i xi
2  E[x2],  

 just like (1/n)i xi
2.  This is the crux of the 

    discussion in your text. 



Inference Based on OLS 

For the heteroscedasticity to be substantive 
wrt estimation and inference by LS, the 
weights must be correlated with xs and/or 
their squares.  (Text, page 220.) 

More likely, the heteroscedasticity will be 
important. Then, b is inefficient.  (Later) 

The White estimator.   ROBUST estimation 
of the variance of b. 

Implication for testing hypotheses.  We will 
use Wald tests.  Why? 



Finding Heteroscedasticity 

The central issue is whether E[2]  =  2i is 

related to the xs or their squares in the 

model.   

Suggests an obvious strategy.  Use 

residuals to estimate disturbances and 

look for relationships between ei
2 and xi 

and/or xi
2.  For example, regressions of 

squared residuals on xs and their squares. 



Procedures 

White’s general test:  nR2 in the regression of ei
2 

on all unique xs, squares, and cross products.  

Chi-squared[P] 

Breusch and Pagan’s Lagrange multiplier test.  

Regress  

     [ei
2 /(ee/n) – 1] on Z (may be X).  Chi-squared. 

Is nR2 with degrees of freedom rank of Z.  

(Very elegant.) 

Others described in text for other purposes.  E.g., 

groupwise heteroscedasticity.  Wald, LM, and 

LR tests all examine the dispersion of group 

specific least squares residual variances. 



Estimation: WLS form of GLS 

General result - mechanics of weighted least 

squares. 

Generalized least squares - efficient estimation.  

Assuming weights are known. 

Two step generalized least squares: 

• Step 1:  Use least squares, then the residuals to 

estimate the weights. 

• Step 2:  Weighted least squares using the 

estimated weights. 

We develop a proof based on our asymptotic 

theory for the asymptotic equivalence of the 

second step to true GLS. 



Autocorrelation 

      The analysis of “autocorrelation” in the narrow sense of 
correlation of the disturbances across time largely 
parallels the discussions we’ve already done for the GR 
model in general and for heteroscedasticity in particular.  
One difference is that the relatively crisp results for the 
model of heteroscedasticity are replaced with relatively 
fuzzy, somewhat imprecise results here.  The reason is 
that it is much more difficult to characterize meaningfully  
“well behaved” data in a time series context.  Thus, for 
example, in contrast to the sharp result that produces the 
White robust estimator, the theory underlying the Newey-
West robust estimator is somewhat ambiguous in its 
requirement of a bland statement about “how far one 
must go back in time until correlation becomes 
unimportant.” 



The AR(1) Model 

    t  =  t-1  +  ut, || < 1. 

 

 Emphasize, this characterizes the disturbances, not the 
regressors. 

A general characerization of the mechanism producing  

     - history + innovations 

 Analysis of this model in particular.  The mean and 
variance and autocovariance   

“Stationarity.”  Some general comments about “time series 
analysis.”  (Not the subject of this course). 

Implication:  The form of 2 

Var[] vs. Var[u]. 

 Other models for autocorrelation - less frequently used - 
AR(1) is the workhorse. 



Building the Model 

• Prior view:  A feature of the data 

– “Account for autocorrelation in the data. 

– Different models, different estimators 

 

• Contemporary view:  Why is there 

autocorrelation? 

– What is missing from the model 

– Build in appropriate dynamic structures 

– Autocorrelation should be “built out” of the model 

– Use robust procedures (Newey-West) instead of 

elaborate models specifically for the autocorrelation. 



Implications for Least Squares 

Familiar results:  Consistent, unbiased, inefficient, 
asymptotic normality 

The inefficiency of least squares:  Difficult to characterize 
generally.  It is worst in “low frequency”  i.e., long period 
(year) slowly evolving data.  Can be extremely bad.  GLS 
vs. OLS, the efficiency ratios can be 3 or more. 

A very important exception - the lagged dependent variable 

 

   yt  =  xt  +  yt-1 + t. t  =  t-1  +  ut,.   

 

Obviously, Cov[yt-1 ,t ]  0, because of the form of t.    

  How to estimate?  IV 

  Should the model be fit in this form?  Something 
missing? 

Robust estimation of the covariance matrix - the Newey-
West estimator. 



GLS and FGLS 

Theoretical result for known  - i.e., known 

.  Prais-Winsten vs. Cochrane-Orcutt. 

FGLS estimation:  How to estimate ?  OLS 

residuals as usual - first autocorrelation. 

Many variations, all based on correlation of 

et and et-1 

 a.   Prais-Winsten vs. Cochrane-Orcutt.  

 b.   The question of dropping the first 

observation.  Should you? 



Testing for Autocorrelation 

A general proposition:  There are several tests.  All are 
functions of the simple autocorrelation of  the least 
squares residuals. 

The Durbin - Watson test.  d    2(1 - r).  Small values of d 
lead to rejection of  

 NO AUTOCORRELATION:  Why are the bounds 
necessary? 

Godfrey’s LM test.  Regression of et on et-1 and xt.  Uses a 
“partial correlation.” 

 

Durbin’s H test when lagged y is present.   

 H = (1 - d/2) (T/(1 - T Est.Var[c])1/2 

where c is the coefficient on the lagged y.  If it is not 
computable, use Godfrey’s test.  (Durbin discovered it 
earlier.) 



Time Series Regression 

     Aggregate U.S. Quarterly data on Consumption 

and Disposable Income (Appendix F5.1, 1950-

2000 in your text.)  The results below show a 

regression of Log(Real Consumption) on a 

constant and Log(Real Disposable Income).  

The fit of the model is extremely good, as one 

might expect.  The figure below is a simple time 

series plot of the residuals from this regression.  

The cyclical behavior which is typical of 

autocorrelated series is evident.  (The 

correlation of the residuals with their one period 

previous values is about 0.91.) 


