
Generalized 

Regression Model 

 Based on Greene’s Note 15 

(Chapter 8)  



Generalized Regression Model 

Setting:  The classical linear model 

assumes that E[]  =  Var[]  =  2I.  That 

is, observations are uncorrelated and all 

are drawn from a distribution with the 

same variance.  The generalized 

regression (GR) model allows the 

variances to differ across observations 

and allows correlation across 

observations.  



Implications 

• The assumption that Var[] = 2I is used to derive the 
result Var[b] = 2(XX)-1.  If it is not true, then the use of 
s2(XX)-1 to estimate Var[b] is inappropriate. 

• The assumption was used to derive most of our test 
statistics, so they must be revised as well. 

• Least squares gives each observation a weight of 1/n.  
But, if the variances are not equal, then some 
observations are more informative than others. 

• Least squares is based on simple sums, so the 
information that one observation might provide about 
another is never used. 



GR Model 

• The generalized regression model:   

           y = X + ,  

          E[|X] = 0, Var[|X]  =  2.  

      Regressors are well behaved.  We consider 

some examples with  Trace  = n.  (This is a 

normalization with no content.) 

• Leading Cases 

– Simple heteroscedasticity 

– Autocorrelation 

– Panel data and heterogeneity more generally. 



Least Squares 
• Still unbiased. (Proof did not rely on ) 

• For consistency, we need the true variance of b,  

 

                   Var[b|X]  = E[(b-β)(b-β)’|X] 

                                     = (X’X)-1 E[X’εε’X] (X’X)-1  

                                   =  2 (X’X)-1 XX (X’X)-1 . 

 

       Divide all 4 terms by n. If the middle one converges to a finite 
matrix of constants, we have the result, so we need to examine   

 

                   (1/n)XX  =  (1/n)ij  ij xi xj.   

 

      This will be another assumption of the model. 

• Asymptotic normality?  Easy for heteroscedasticity case, very 
difficult for autocorrelation case.  



Robust Covariance Matrix 

• Robust estimation: 

• How to estimate Var[b|X] =  2 (X’X)-1 XX 

(X’X)-1 for the LS b?   

• The distinction between estimating  

             2 an n by n matrix 

      and estimating 

             2 XX  = 2 ijij xi xj 

• For modern applied econometrics,  

– The White estimator 

– Newey-West. 



The White Estimator 
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Newey-West Estimator 
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Generalized Least Squares 

A transformation of the model:    

        P  =  -1/2. P’P = -1     

      Py  =  PX + P  or   

       y*  =  X* + *.    Why? 

      E[**‟|X*]= PE[’|X*]P’ 

                      = PE[’|X]P’ 

          = σ2PP’ = σ2 -1/2 -1/2 = σ2 0  

                      = σ2I 



Generalized Least Squares 

Aitken theorem.  The Generalized Least 

Squares estimator, GLS. 

                 Py  =  PX + P  or   

                y*  =  X* + *.  E[**‟|X*]= σ2I 

   Use ordinary least squares in the 

transformed model. Satisfies the Gauss – 

Markov theorem. 

                  b* = (X*’X*)-1X*’y* 



Generalized Least Squares 

Efficient estimation of  and, by implication, 
the inefficiency of least squares b. 

                   = (X*’X*)-1X*’y* 

                   = (X’P’PX)-1 X’P’Py 

                   = (X’Ω-1X)-1 X’Ω-1y 

 

                  ≠ b.      is efficient,  

          so by construction, b is not.  

β̂

β̂β̂



Asymptotics for GLS 

Asymptotic distribution of GLS.  (NOTE:  We 

apply the full set of results of the classical 

model to the transformed model). 

  Unbiasedness 

  Consistency - “well behaved data” 

  Asymptotic distribution 

  Test statistics 



Unbiasedness 
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Consistency 
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Asymptotic Normality 
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Asymptotic Normality (Cont.) 
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Test Statistics  
(Assuming Known Ω) 

• With known Ω, apply all familiar results to 

the transformed model. 

• With normality, t and F statistics apply to 

least squares based on Py and PX 

• With asymptotic normality, use Wald 

statistics and the chi-squared distribution, 

still based on the transformed model. 



Generalized (Weighted) Least 

Squares:Heteroscedasticity 
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Autocorrelation 

     t  =  t-1  +  ut    

    („First order autocorrelation.‟  How does this 
come about?)   

 Assume -1 <  < 1.  Why? 

 ut  =  „nonautocorrelated white noise‟ 

 t   = t-1 + ut  (the autoregressive form) 

      = (t-2  +  ut-1)  +  ut 

          = ... (continue to substitute) 

  =  ut + ut-1 + 2ut-2 + 3ut-3 + ... 

  = (the moving average form)  

(Some observations about modeling time series.) 



Autocorrelation 
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Autocovariances 
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Autocorrelation Matrix 
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Generalized Least Squares 
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The Autoregressive Transformation 
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Unknown  
• The problem (of course),  is unknown.  For now, we 

will consider two methods of estimation: 

– Two step, or feasible estimation.  Estimate  first, 
then do GLS. Emphasize - same logic as White 
and Newey-West.  We don‟t need to estimate .  
We  need to find a matrix that behaves the same as 
(1/n)X-1X. 

– Properties of the feasible GLS estimator 

• Maximum likelihood estimation of , 2, and  all at 
the same time. 

– Joint estimation of all parameters.  Fairly rare.  
Some generalities… 

– We will examine two applications:  Harvey‟s model 
of heteroscedasticity and Beach-MacKinnon on the 
first order autocorrelation model 



Specification 

•  must be specified first. 

• A full unrestricted  contains n(n+1)/2 - 1 

parameters.  (Why minus 1?  Remember, 

tr() = n, so one element is determined.) 

•  is generally specified in terms of a few 

parameters.  Thus,  = () for some 

small parameter vector .   It becomes a 

question of estimating . 

• Examples:  



Heteroscedasticity: Harvey‟s Model  

• Var[i | X]  =  2 exp(zi)      

• Cov[i,j | X]  =  0 

     e.g.:  zi  =  firm size 

     e.g.:  zi  =  a set of dummy variables 

(e.g., countries) (The groupwise 

heteroscedasticity model.) 

• [2 ]  =  diagonal [exp(  + zi)],   

              = log(2) 



AR(1) Model of Autocorrelation 
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Two Step Estimation 

The general result for estimation when  is 

estimated. 

GLS uses   [X-1X]X -1 y   which converges in 

probability to . 

We seek a vector which converges to the same 

thing that this does. Call it “Feasible GLS” or 

FGLS, based on [X     X]X      y     

The object is to find a set of parameters such that  

    [X     X]X      y   -   [X -1 X]X -1 y     0  

ˆ -1Ω ˆ -1Ω

ˆ -1Ω ˆ -1Ω



Feasible GLS 


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Two Step FGLS 

(Theorem 8.5)  To achieve full efficiency, we 

do not need an efficient estimate of the 

parameters in , only a consistent one.  

Why? 



Harvey‟s Model 

Examine Harvey‟s model once again. 

Methods of estimation: 

Two step FGLS:  Use the least squares residuals 

to estimate ,  then use   

 {X[Ω()]-1 X}-1X’[Ω()]-1y to estimate . 

Full maximum likelihood estimation.  Estimate all 

parameters simultaneously. 

A handy result due to Oberhofer and Kmenta - the 

“zig-zag” approach.  

Examine a model of groupwise heteroscedasticity. 



Harvey‟s Model for Groupwise 

Heteroscedasticity 

Groupwise sample, yig, xig,… 

N groups, each with Ng observations. 

Var[εig] = σg
2 

Let dig = 1 if observation i,g is in group j, 0 else. 

          = group dummy variable. 

Var[εig]  =   σg
2 exp(θ2d2 + … θGdG) 

Var1 = σg
2 , Var2 = σg

2 exp(θ2) and so on.  

 



Estimating Variance Components 

• OLS is still consistent: 

• Est.Var1 = e1‟e1/N1 estimates σg
2  

• Est.Var2 = e2‟e2/N2 estimates σg
2 exp(θ2) 

• Estimator of θ2  is ln[(e2‟e2/N2)/(e1‟e1/N1)] 

• (1)  Now use FGLS – weighted least squares 

• Recompute residuals using WLS slopes 

• (2) Recompute variance estimators 

• Iterate to a solution… between (1) and (2) 


