Generalized
Regression Model

Based on Greene’s Note 15
(Chapter 8)



Generalized Regression Model

Setting: The classical linear model
assumes that E[eg'] = Var[g] = o?l. That
IS, observations are uncorrelated and all
are drawn from a distribution with the
same variance. The generalized
regression (GR) model allows the
variances to differ across observations
and allows correlation across
observations.



Implications

The assumption that Var[e] = ¢?l is used to derive the
result Var[b] = o?(X'X)2. Ifitis not true, then the use of
s?(X'X)1 to estimate Var[b_ IS Inappropriate.

The assumption was used to derive most of our test
statistics, so they must be revised as well.

Least squares gives each observation a weight of 1/n.
But, if the variances are not equal, then some
observations are more informative than others.

Least squares is based on simple sums, so the
iInformation that one observation might provide about
another is never used.




GR Model

The generalized regression model:
y = Xp + &,
E[e|X] =0, Var[g|X] = c2%Q.
Regressors are well behaved. We consider

some examples with Trace Q =n. (Thisis a
normalization with no content.)

Leading Cases
—  Simple heteroscedasticity

— Autocorrelation
— Panel data and heterogeneity more generally.



Least Squares

Still unbiased. (Proof did not rely on Q)
For consistency, we need the true variance of b,

Var[b|X] = E[(b-B)(b-B)’[X]
= (X'X)* E[X’ee’X] (X’X)-!
= 2 (X'X)1 X'QX (X’X)1.

Divide all 4 terms by n. If the middle one converges to a finite
matrix of constants, we have the result, so we need to examine

(LMX'QX = (UN)ZT o; X X,

This will be another assumption of the model.

Asymptotic normality? Easy for heteroscedasticity case, very
difficult for autocorrelation case.



Robust Covariance Matrix

Robust estimation:
How to estimate Var[b|X] = &% (X’X)1 X'QX
(X’X)L for the LS b?
The distinction between estimating
c2Q an n by n matrix
and estimating
o2 X'QX = 62 ZZo; X; X
For modern applied econometrics,

— The White estimator
— Newey-West.



The White Estimator

Est.Var[b] = (X'X)l[ XX J(X'X)1

Use

s = Azi / fﬁ-diag(mi) note tr(Q)=n
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Newey-West Estimator

Heteroscedasticity Component - Diagonal Elements

S, = %Z" e’x X'

i=1 i

Autocorrelation Component - Off Diagonal Elements
1 L n / /
Sl = HZH Zt:|+1 Wletet—l(xtxt—l T xt—lxt)

w,=1- L "Bartlett weight”
L+1

Est.Var[b]= % ( xr']xj [S, +S,] ( xr"xj




Generalized Least Squares

A transformation of the model:
P = Q12 PPP=Q1

Py = PXB + Pe or

y* = X*B+¢e*. Why?

El[e*e™’|X*]= PE[eg’|X*]P’
= PE[e€’| X]P’

— 0-2pr’ — 0-2 Q-1/2 QQ-llz — 0-2 QO

= o2l




Generalized Least Squares

Aitken theorem. The Generalized Least
Sguares estimator, GLS.

Py = PXB + Pe or
y* = X*B + g*. E[e*e”’|X*]= 04l
Use ordinary least squares in the

transformed model. Satisfies the Gauss —
Markov theorem.

h* = (X*’X*)'1X*’y*



Generalized Least Squares

Efficient estimation of B and, by implication,
the inefficiency of least squares b.

B — (X*ax*)-lx*sy*
= (X'P’PX)1 X'P'Py
= (X'QIX)L X'Qly

B #b. B is efficient,
so by construction, b Is not.



Asymptotics for GLS

Asymptotic distribution of GLS. (NOTE: We
apply the full set of results of the classical
model to the transformed model).

Unblasedness
Consistency - “well behaved data”

Asymptotic distribution
Test statistics



Unblasedness

N

B _ (Xlg-lx)—l xln-ly
=B+ (X'QX) ' X'Q e

E[B | X]=B + (X'QX) ' X'QE[e | X]

=B if E[e|X]=0



Consistency

Use Mean Square

2 (X'Q*le

Var[B|X]= - 507

X'Q'X
n

Requires to be ( j "well behaved"

Either converge to a constant matrix or diverge.
Heteroscedasticity case:
X'Q'X 1

n - n Zi=1

1
— XX

|
@

Autocorrelation case:

X'Q'X 1 1 :
==>" 3" = xx' n’ terms. Convergence is unclear.
1 i=1 j=1 ]

n ;



Asymptotic Normality

n 191 -1
BB —r X2X| Lxae
Converge to normal with a stable variance O(1)?

11 -1
(X ‘: Xj — a constant matrix?

%X'Q‘ls — a mean to which we can apply the

central limit theorem?
Heteroscedasticity case?
2 Xi

1 .
“X'Qle= Var = 0%, —= is just data.
n Z'Hﬂ [H Jor
Apply Lindeberg-Feller. (Or assuming x; //w, is a draw from a common
distribution with mean and fixed variance - some recent treatments.)
Autocorrelation case?



Asymptotic Normality (Cont.)

For the autocorrelation case
1

1 _ — 1 n n i
HX Q 18 — EZEI ijlﬂj X.X.c.e

it jCivi

Does the double sum converge? Uncertain. Requires elements

of Q' to become small as the distance between i and j increases.
(Has to resemble the heteroscedasticity case.)



Test Statistics
(Assuming Known Q)

« With known Q, apply all familiar results to
the transformed model.

« With normality, t and F statistics apply to
least squares based on Py and PX

« With asymptotic normality, use Wald
statistics and the chi-squared distribution,
still based on the transformed model.



Generalized (Weighted) Least
Sguares:Heteroscedasticity

(o, 0 .. O
Var[e] = 6’Q = ¢° 0 @ . 0
0 0 .. 0
0 0 ... o)

1/Jo, 0 .. 0

gwe_| 0 Mo, .. 0

0 0 .. O

0 0 .. 1/Jo,

n

B0 oemy) < 0, x| (3, 2wy

G —

n-K



Autocorrelation

& = P&y T U
(‘First order autocorrelation.” How does this
come about?)
Assume -1 < p <1. Why?
u, = ‘nonautocorrelated white noise’
g = pg.q t+ U, (the autoregressive form)
= p(pgp + Upg) + U,
= ... (continue to substitute)
= U+ pUgy + p2Up + poUg + .
= (the moving average form)
(Some observations about modeling time series.)



Autocorrelation

Var[e, ] = Var[u, +pu, , +p°U, , +...]

= Var[zzo piut_iJ
=Y P Gzp

An easier way: Since Var[e ] = Var[e,,] and ¢, = pge,_, +U,

Var[e,] = p°Var[e, ,]+ Var[u,]+ 2pCov[e, ,,u,]
=p2V3r[8t] + (53




Autocovariances

Continuing...
Covle,, &, ,] = Cov[pe, , +U,,&,]
= pCovle, ,,¢&,,]1+ Cov[u,, e, ]
= pVarl[e,,] = pVarle,]
__ PO,
(1-p%)
Covle,, ¢, ,] = Cov[pe, ; +U,,&,,]

= pCovle, ,,¢,,]+ Cov[u,, e, ,]

= pCovle,, ¢, ,]
2 2

— pGu
1-p%)

and so on.



Autocorrelation Matrix

1 p p°

2 P 1 P

Gzﬂztl_};z) p° P 1
i pT -1 pT.—Z pT -3

(Note, trace Q = n as required.)




Generalized Least Squares

JL-p> 0 0 .. 0
—p 1 0 ... O




The Autoregressive Transformation

| ]
Yo = xtB+ St & = P&y T U

Yi = PYiq = (xt — pxt-1)'B + (St — pgt_1)
Yi = PYiq = (xt — pxt-1)'B + U,

(Where did the first observation go?)



Unknown Q

The problem (of course), Q is unknown. For now, we
will consider two methods of estimation:

—  Two step, or feasible estimation. Estimate Q first,
then do GLS. Emphasize - same logic as White
and Newey-West. We don’t need to estimate Q.
We need to find a matrix that behaves the same as
(1/nN)X'QX.

—  Properties of the feasible GLS estimator

Maximum likelihood estimation of B, o2, and Q all at
the same time.

— Joint estimation of all parameters. Fairly rare.
Some generalities...

—  We will examine two applications: Harvey's model
of heteroscedasticity and Beach-MacKinnon on the
first order autocorrelation model



Specification

) must be specified first.

A full unrestricted Q contains n(n+1)/2 - 1
parameters. (Why minus 1? Remember,
tr(Q2) = n, so one element is determined.)

Q is generally specified in terms of a few
parameters. Thus, Q = Q(0) for some
small parameter vector 0. It becomes a
guestion of estimating 6.

Examples:



Heteroscedasticity: Harvey’'s Model

* Var[g; | X] = o2 exp(y'z)
* Covlg,g | X] = 0
e.g.. z; = firm size
e.g.. z; = aset of dummy variables

(e.g., countries) (The groupwise
neteroscedasticity model.)

 [6% Q] = diagonal [exp( 6 +y'z)],
0 = log(c?)




AR(1) Model of Autocorrelation

1 p p2 pT—l

o P p

Gzn:(l—l;)zj p° P 1 p'
i pT 1 pT—Z pT 3 1 )




Two Step Estimation

The general result for estimation when Q Is
estimated.

GLS uses [X'QX]X'Q1ly which converges in
probability to B.

We seek a vector which converges to the same
thing that this does. ACaII it “FAeasibIe GLS” or
FGLS, based on [X'Q1X]X' Q1y

The object is to find a set of parameters such that
XQIXIX'Qly - [XQIXIX' Qly >0



Feasible GLS

For FGLS estimation, we do not seek an estimator of Q
such that
Q-0 50

This makes no sense, since Q is nxn and does not "converge" to
anything. We seek a matrix Q such that

(1/NX'QX - (1/n)X'QX -0
For the asymptotic properties, we will require that

(1/nN)X'Q % - (1/n)X'Qe -0
Note in this case, these are two random vectors, which we require
to converge to the same random vector.



Two Step FGLS

(Theorem 8.5) To achieve full efficiency, we
do not need an efficient estimate of the
parameters in Q, only a consistent one.
Why?



Harvey's Model

Examine Harvey’'s model once again.
Methods of estimation:

Two step FGLS: Use the least squares residuals
to estimate 0, then use

{X'[Q(0)] X} X’ [©2(6)] 1y to estimate .
Full maximum likelihood estimation. Estimate all
parameters simultaneously.

A handy result due to Oberhofer and Kmenta - the
“zig-zag” approach.

Examine a model of groupwise heteroscedasticity.



Harvey's Model for Groupwise
Heteroscedasticity

Groupwise sample, yi,, Xig,---

N groups, each with N, observations.

Varlg, ] = 0,°

Let di, = 1 if observation i,g is in group J, O else.

= group dummy variable.
Varg, ] = 042 exp(0,d, + ... 6dg)
Var; =0, Var2 0, exp(ez) and so on.



Estimating Variance Components

OLS is still consistent:

Est.Var, = e;'e,/N, estimates 0

Est.Var, = e,'e,/N, estimates 0,2 exp(6,)
Estimator of 6, is In[(e,'e,/N,)/(e,'e,/N,)]

(1) Now use FGLS — weighted least squares
Recompute residuals using WLS slopes

(2) Recompute variance estimators

Iterate to a solution... between (1) and (2)



