Large Sample Theory

- Convergence
 - Convergence in Probability
 - Convergence in Distribution
- Central Limit Theorems
- Asymptotic Distribution
- Delta Method

Convergence in Probability

- A sequence of random scalars $\{z_n\} = (z_1, z_2, ...)$ **converges in probability** to z (a constant or a random variable) if, for any $\varepsilon > 0$, $\lim_{n\to\infty} \operatorname{Prob}(|z_n - z| > \varepsilon) = 0$. z is the **probability limit** of z_n and is written as: $\operatorname{plim}_{n\to\infty} z_n = z$ or $z_n \to_p z$.
- Extension to a sequence of random vectors or matrices: element-by-element convergence in probability, $\mathbf{z}_n \rightarrow_p \mathbf{z}$.

Convergence in Probability

- A special case of convergence in probability is mean square convergence: if $E(z_n) = \mu_n$ and $Var(z_n) = \sigma_n^2$ such that $\mu_n \rightarrow z$ and $\sigma_n^2 \rightarrow 0$, then z_n converges in mean square to z, and $z_n \rightarrow_p z$.
- What is the difference between $E(z_n)$ and plim z_n or $z_n \rightarrow_p z$?
- Mean square convergence is sufficient (not necessary) for convergence in probability.

Convergence in Probability

- Example: $x \sim (\mu, \sigma^2)$
 - Sample: $\{x_1, x_2, \dots\}$
 - Sample Mean: $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$
 - Sequence of Sample Means: $\{\overline{x}_n\}, n \to \infty$

$$E(\overline{x}_n) = \mu \to \mu \quad \Rightarrow \quad \overline{x}_n \to_p \mu$$
$$Var(\overline{x}_n) = \frac{\sigma^2}{n} \to 0$$

Almost Sure Convergence

- A sequence of random scalars $\{z_n\} = (z_1, z_2, ...)$ converges almost surely to z (a constant or a random variable) if, Prob($\lim_{n\to\infty} z_n = z$) = 1. Write: $z_n \to_{as} z$.
- If a sequence converges almost surely, then it converges in probability. That is,

 $z_n \rightarrow_{as} z \Longrightarrow z_n \rightarrow_p z.$

• Extension to a sequence of random vectors or matrices: element-by-element almost sure convergence. In particular, $\mathbf{z}_n \rightarrow_{as} \mathbf{z} \Rightarrow \mathbf{z}_n \rightarrow_p \mathbf{z}$.

Laws of Large Numbers

• Let
$$\overline{z}_n = \frac{1}{n} \sum_{i=1}^n z_i$$

- LLN concern conditions under which the sequence $\{\overline{z}_n\}$ converges in probability.
- Chebychev's LLN:

 $[\lim_{n\to\infty} E(\overline{z}_n) = \mu, \lim_{n\to\infty} Var(\overline{z}_n) = 0] \Longrightarrow \overline{z}_n \to_p \mu$

Laws of Large Numbers

• Kolmogorov's LLN: Let $\{z_i\}$ be i.i.d. with $E(z_i) = \mu$ (the variance does not need to be finite). Then

$$\overline{z}_n \rightarrow_{as} \mu$$

• This implies $\overline{z}_n \rightarrow_p \mu$

Speed of Convergence

- Order of a Sequence
 - 'Little oh' o(.): Sequence z_n is $o(n^{\delta})$ (order less than n^{δ}) if and only if $n^{-\delta}z_n \rightarrow 0$.
 - Example: $z_n = n^{1.4}$ is $o(n^{1.5})$ since $n^{-1.5} z_n = 1 / n^{.1} \to 0$.
 - 'Big oh' O(.): Sequence z_n is O(n^{δ}) if and only if $n^{-\delta}z_n \rightarrow a$ finite nonzero constant.
 - Example 1: $z_n = (n^2 + 2n + 1)$ is $O(n^2)$.
 - Example 2: $\Sigma_i x_i^2$ is usually O(n¹) since this is n×the mean of x_i^2 and the mean of x_i^2 generally converges to E[x_i^2], a finite constant.
- What if the sequence is a random variable? The order is in terms of the variance.
 - Example: What is the order of the sequence \overline{x}_n in random sampling? Because Var[\overline{x}_n] = σ^2/n which is O(1/n)

Convergence in Distribution

Let {z_n} be a sequence of random scalars and F_n be the c.d.f. of z_n. {z_n} converges in distribution to a random scalar z if the c.d.f. F_n of z_n converges to the c.d.f. F of z at every continuity point of F. That is, z_n→_d z. F is the asymptotic or limiting distribution of z_n.

•
$$z_n \rightarrow_p z \Longrightarrow z_n \rightarrow_d z$$
, or $z_n \rightarrow_a F(z)$

Convergence in Distribution

The extension to a sequence of random vectors: z_n→_d z if the joint c.d.f. F_n of the random vector z_n converges to the joint c.d.f. F of z at every continuity point of F. However, element-by-element convergence does not necessarily mean joint convergence.

Central Limit Theorems

• CLT concern about the limiting behavior of $\overline{z}_n - \mu$ blown up by \sqrt{n} .

Note: $\mu = E(\overline{z}_n) = E(z_i)$ if z_i is i.i.d.

• Lindeberg-Levy CLT (multivariate): Let $\{z_i\}$ be i.i.d. with $E(z_i) = \mu$ and $Var(z_i) = \Sigma$. Then

$$\sqrt{n}(\overline{z}_n - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (z_i - \mu) \to_d N(0, \Sigma)$$

Central Limit Theorems

• Lindeberg-Levy CLT (univariate): If $z \sim (\mu, \sigma^2)$, and $\{z_1, z_2, ..., z_n\}$ are random sample.

Define
$$\overline{z}_n = \frac{1}{n} \sum_{i=1}^n z_i$$
, then
 $\sqrt{n}(\overline{z}_n - \mu) \rightarrow_d N(0, \sigma^2)$

Central Limit Theorems

• Lindeberg-Feller CLT (univariate): If $z_i \sim (\mu_i, \sigma_i^2)$, i=1,2,...,n. Let $\overline{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_i$, and $\overline{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2 \rightarrow \overline{\sigma}^2$ If no single term dominates this average

variance, then

$$\sqrt{n}(\overline{z}_n - \overline{\mu}_n) \rightarrow_d N(0, \overline{\sigma}^2)$$

Asymptotic Distribution

- An asymptotic distribution is a finite sample approximation to the true distribution of a random variable that is good for large samples, but not necessarily for small samples.
- Stabilizing transformation to obtain a limiting distribution: Multiply random variable x_n by some power, a, of n such that the limiting distribution of n^ax_n has a finite, nonzero variance.
 - Example, \overline{x}_n has a limiting variance of zero, since the variance is σ^2/n . But, the variance of $\sqrt{n}\overline{x}_n$ is σ^2 . However, this does not stabilize the distribution because $E(\sqrt{n}\overline{x}_n) = \sqrt{n}\mu$. The stabilizing transformation would be $\sqrt{n}(\overline{x}_n \mu)$

Asymptotic Distribution

- Obtaining an asymptotic distribution from a limiting distribution:
 - Obtain the limiting distribution via a stabilizing transformation.
 - Assume the limiting distribution applies reasonably well in finite samples.
 - Invert the stabilizing transformation to obtain the asymptotic distribution.

Asymptotic Distribution

• Example: Asymptotic normality of a distribution.

From
$$\sqrt{n}(\overline{x} - \mu) / \sigma \rightarrow_{d} N[0,1]$$

 $\sqrt{n}(\overline{x} - \mu) \rightarrow_{a} N[0,\sigma^{2}]$
 $(\overline{x} - \mu) \rightarrow_{a} N[0,\sigma^{2} / n]$
 $\overline{x} \rightarrow_{a} N[\mu,\sigma^{2} / n]$

Asymptotic distribution.

 σ^2 / n = asymptotic variance of \overline{x} .

Asymptotic Efficiency

- Comparison of asymptotic variances
- How to compare consistent estimators? If both converge to constants, both variances go to zero.
- Example: Random sampling from the normal distribution,
 - Sample mean is asymptotically $N[\mu,\sigma^2/n]$
 - Median is asymptotically $N[\mu,(\pi/2)\sigma^2/n]$
 - Mean is asymptotically more efficient.

 Multivariate Convergence in Distribution Let {z_n} be a sequence of K-dimensional random vectors. Then:

 $\mathbf{z}_n \rightarrow_d \mathbf{z} \Leftrightarrow \lambda' \mathbf{z}_n \rightarrow_d \lambda' \mathbf{z}$ for any K-dimensional vector of λ real numbers.

• Slutsky Theorem: Suppose a(.) is a scalaror vector-valued continuous function that does not depend on n:

$$z_n \rightarrow_p \alpha \Longrightarrow a(z_n) \rightarrow_p a(\alpha)$$
$$z_n \rightarrow_d z \Longrightarrow a(z_n) \rightarrow_d a(z)$$

• $\mathbf{x}_n \rightarrow_d \mathbf{x}, \mathbf{y}_n \rightarrow_p \alpha \Rightarrow \mathbf{x}_n + \mathbf{y}_n \rightarrow_d \mathbf{x} + \alpha$ $\mathbf{x}_n \rightarrow_d \mathbf{x}, \mathbf{y}_n \rightarrow_p 0 \Rightarrow \mathbf{y}_n' \mathbf{x}_n \rightarrow_p 0$

• Slutsky results for matrices:

$$A_n \rightarrow_p \mathbf{A} \text{ (plim } \mathbf{A}_n = \mathbf{A}),$$

$$B_n \rightarrow_p \mathbf{B} \text{ (plim } \mathbf{B}_n = \mathbf{B}),$$

(element by element)

$$\Rightarrow$$

$$plim (\mathbf{A}_n^{-1}) = [plim \mathbf{A}_n]^{-1} = \mathbf{A}^{-1}$$

$$plim (\mathbf{A}_n \mathbf{B}_n) = (plim \mathbf{A}_n)(plim \mathbf{B}_n) = \mathbf{A}\mathbf{B}$$

- $\mathbf{x}_n \rightarrow_d \mathbf{x}, \mathbf{A}_n \rightarrow_p \mathbf{A} \Rightarrow \mathbf{A}_n \mathbf{x}_n \rightarrow_d \mathbf{A} \mathbf{x}$ In particular, if $\mathbf{x} \sim N(\mathbf{0}, \mathbf{\Sigma})$, then $\mathbf{A}_n \mathbf{x}_n \rightarrow_d N(\mathbf{0}, \mathbf{A} \mathbf{\Sigma} \mathbf{A}')$
- $\mathbf{x}_n \rightarrow_d \mathbf{x}, \mathbf{A}_n \rightarrow_p \mathbf{A} \Rightarrow \mathbf{x}_n' \mathbf{A}_n^{-1} \mathbf{x}_n \rightarrow_d \mathbf{x}' \mathbf{A}^{-1} \mathbf{x}$

Delta Method

• Suppose $\{\mathbf{x}_n\}$ is a sequence of Kdimensional random vector such that $\mathbf{x}_n \rightarrow \boldsymbol{\beta}$ and $\sqrt{n}(\mathbf{x}_n - \boldsymbol{\beta}) \rightarrow_d \mathbf{z}$. Suppose $\mathbf{a}(.)$: $\mathbb{R}^K \rightarrow \mathbb{R}^r$ has continuous first derivatives with $\mathbf{A}(\boldsymbol{\beta})$ defined by $\mathbf{A}(\boldsymbol{\beta}) = \frac{\partial \mathbf{a}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}$

Then $\sqrt{n[\mathbf{a}(\mathbf{x}_n) - \mathbf{a}(\boldsymbol{\beta})]} \rightarrow_d \mathbf{A}(\boldsymbol{\beta})\mathbf{z}$

Delta Method

• $\sqrt{n(\mathbf{x}_n - \boldsymbol{\beta})} \rightarrow_d N(\mathbf{0}, \boldsymbol{\Sigma})$ \Rightarrow $\sqrt{n[\mathbf{a}(\mathbf{x}_n) - \mathbf{a}(\boldsymbol{\beta})]} \rightarrow_d N(\mathbf{0}, \mathbf{A}(\boldsymbol{\beta})\boldsymbol{\Sigma}\mathbf{A}(\boldsymbol{\beta})')$

Delta Method

• Example

 $\overline{\mathbf{X}}_{\mathbf{n}} \xrightarrow{\mathbf{a}} \mathbb{N}[\mu, \sigma^2 / \mathbf{n}]$

What is the asymptotic distribution of

$$f(\overline{x}_n) = \exp(\overline{x}_n)$$
 or $f(\overline{x}_n) = 1/\overline{x}_n$

- (1) Normal since \overline{x}_n is asymptotically normally distributed
- (2) Asymptotic mean is $f(\mu) = \exp(\mu)$ or $1/\mu$.
- (3) For the variance, we need $f'(\mu) = \exp(\mu)$ or $-1/\mu^2$ Asy.Var[$f(\overline{x}_n)$] = $[\exp(\mu)]^2 \sigma^2 / n$ or $[1/\mu^4] \sigma^2 / n$