
Large Sample Theory 

• Convergence 

– Convergence in Probability 

– Convergence in Distribution 

• Central Limit Theorems 

• Asymptotic Distribution 

• Delta Method 



Convergence in Probability 

• A sequence of random scalars {zn} = (z1,z2,…) 

converges in probability to z (a constant or a 

random variable) if, for any e>0, limn Prob(|zn-

z|>e) = 0. z is the probability limit of zn and is 

written as: plimn zn= z or zn p z. 

• Extension to a sequence of random vectors or 

matrices: element-by-element convergence in 

probability, zn p z. 

 



Convergence in Probability 

• A special case of convergence in probability is 

mean square convergence: if E(zn) = mn and 

Var(zn) = sn
2 such that mn→z and sn

2→0, then zn 

converges in mean square to z, and zn p z.  

• What is the difference between E(zn) and plim zn 

or zn p z? 

• Mean square convergence is sufficient (not 

necessary) for convergence in probability. 



Convergence in Probability 

• Example: 

– Sample: 

– Sample Mean: 

– Sequence of Sample Means:  
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Almost Sure Convergence 

• A sequence of random scalars {zn} = (z1,z2,…) 
converges almost surely to z (a constant or a 
random variable) if,   
Prob(limnzn=z) = 1. Write: zn as z. 

• If a sequence converges almost surely, then it 
converges in probability. That is,  
zn as z  zn p z. 

• Extension to a sequence of random vectors or 
matrices: element-by-element almost sure 
convergence. In particular, zn as z  zn p z. 



Laws of Large Numbers 

• Let 

 

• LLN concern conditions under which the 

sequence        converges in probability. 

• Chebychev’s LLN:   
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Laws of Large Numbers 

• Kolmogorov’s LLN: Let {zi} be i.i.d. with 

E(zi) = m (the variance does not need to be 

finite). Then  

 

 

• This implies 

 

μz asn 

μz pn 



Speed of Convergence 

• Order of a Sequence 
– ‘Little oh’ o(.): Sequence zn is o(n) (order less than n) if and only 

if n-zn  0. 
• Example: zn = n1.4 is o(n1.5) since n-1.5 zn =  1 /n.1  0. 

– ‘Big oh’ O(.): Sequence zn is O(n) if and only if n-zn  a finite 
nonzero constant. 

• Example 1: zn =  (n2 + 2n + 1) is O(n2). 

• Example 2:  ixi
2  is usually O(n1) since this is nthe mean of xi

2 and 
the mean of xi

2 generally converges to E[xi
2], a finite constant. 

• What if the sequence is a random variable?  The order is in 
terms of the variance. 
– Example:  What is the order of the sequence       in random 

sampling? Because Var[    ] = σ2/n which is O(1/n) nx
nx



Convergence in Distribution 

• Let {zn} be a sequence of random scalars 

and Fn be the c.d.f. of zn. {zn} converges in 

distribution to a random scalar z if the 

c.d.f. Fn of zn converges to the c.d.f. F of z 

at every continuity point of F. That is,  

zn d z. F is the asymptotic or limiting 

distribution of zn. 

• zn p z  zn d z, or zn a F(z) 



Convergence in Distribution 

• The extension to a sequence of random 

vectors: znd z if the joint c.d.f. Fn of the 

random vector zn converges to the joint 

c.d.f. F of z at every continuity point of F. 

However, element-by-element convergence 

does not necessarily mean joint 

convergence. 



Central Limit Theorems 

• CLT concern about the limiting behavior of 

 

 

• Lindeberg-Levy CLT (multivariate):  

Let {zi} be i.i.d. with E(zi) = m and  

Var(zi) = . Then  
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Central Limit Theorems 

• Lindeberg-Levy CLT (univariate):  

If z ~ (m,s2), and {z1,z2,...,zn} are random 

sample.   
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Central Limit Theorems 

• Lindeberg-Feller CLT (univariate):  

If zi ~ (mi,si
2), i=1,2,…,n. 

 

 

If no single term dominates this average 

variance, then 
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Asymptotic Distribution 

• An asymptotic distribution is a finite sample 
approximation to the true distribution of a random variable 
that is good for large samples, but not necessarily for small 
samples. 

• Stabilizing transformation to obtain a limiting distribution: 
Multiply random variable xn by some power, a, of n such 
that the limiting distribution of naxn has a finite, nonzero 
variance.  

– Example,      has a limiting variance of zero, since the variance is 
σ2/n.  But, the variance of        is σ2.  However, this does not 
stabilize the distribution because                     . The stabilizing 
transformation would be  
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Asymptotic Distribution 

• Obtaining an asymptotic distribution from a 

limiting distribution: 

– Obtain the limiting distribution via a stabilizing 

transformation. 

– Assume the limiting distribution applies 

reasonably well in finite samples. 

– Invert the stabilizing transformation to obtain 

the asymptotic distribution. 



Asymptotic Distribution 

• Example: Asymptotic normality of a 

distribution.  
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From n(x ) / N[0,1]

n(x ) N[0, ]

    (x ) N[0, / n]

           x N[ , / n]

Asymptotic distribution.

/ n  asymptotic variance of x.  



Asymptotic Efficiency 

• Comparison of asymptotic variances 

• How to compare consistent estimators?  If both 

converge to constants, both variances go to zero.   

• Example: Random sampling from the normal 

distribution,  

– Sample mean is asymptotically N[μ,σ2/n] 

– Median is asymptotically N[μ,(π/2)σ2/n] 

– Mean is asymptotically more efficient. 



Convergence: Useful Results 

• Multivariate Convergence in Distribution 

Let {zn} be a sequence of K-dimensional 

random vectors. Then: 

zn d z  l′zn d l′z  

for any K-dimensional vector of l real 

numbers. 



Convergence: Useful Results 

• Slutsky Theorem: Suppose a(.) is a scalar- 

or vector-valued continuous function that 

does not depend on n: 

znpa  a(zn) p a(a)  

zn d z  a(zn) d a(z) 

• xndx, ynpa  xn+ynd x+a 

xndx, ynp0  yn′xn p 0 



Convergence: Useful Results 

• Slutsky results for matrices:  

AnpA (plim An = A),  

BnpB (plim Bn = B), 

(element by element)  

  

plim (An
-1) = [plim An]

-1 = A-1  

plim (AnBn) = (plimAn)(plimBn) = AB 



Convergence: Useful Results 

• xndx, AnpA  Anxn d Ax 

In particular, if x~N(0,), then 

AnxndN(0,AA′) 

• xndx, AnpA  xn′An
-1xn d x′A-1x  

 



Delta Method 

• Suppose {xn} is a sequence of K-

dimensional random vector such that xnb 

and n(xn-b) d z. Suppose a(.): RK  Rr 

has continuous first derivatives with A(b)  

defined by  

 

Then n[a(xn)-a(b)] d A(b)z 
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Delta Method 

• n(xn-b) d N(0,)  

  

n[a(xn)-a(b)] d N(0, A(b)A(b)’) 

 



Delta Method 

• Example 
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What is the asymptotic distribution of 

f(x )=exp(x )  or  f(x )=1/x

(1) Normal since x  is asymptotically normally distributed

(2) Asymptotic mean is f( )=exp( )  or  1/ .

(3) For the var m m m

m s m s
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iance, we need f'( ) =exp( )  or  -1/  

     Asy.Var[f(x )]= [exp( )] / n  or  [1/ ] / n


