
Classical Linear Regression Model 

• Normality Assumption 

• Hypothesis Testing Under Normality 

• Maximum Likelihood Estimator 

• Generalized Least Squares 



Normality Assumption 

• Assumption 5 

e|X ~ N(0,s2In) 

• Implications of Normality Assumption 

– (b-b)|X ~ N(0,s2(X′X)-1) 

– (bk-bk)|X ~ N(0, s2([X′X)-1]kk)  

 

2 1
~ (0,1)

[( ' ) ]

k k
k

kk

b
z N

b

s 




X X



Hypothesis Testing under Normality 

• Implications of Normality Assumption 

– Because ei/s ~ N(0,1), 

 

 

 

where M = I-X(X′X)-1X′ and trace(M) = n-K. 
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Hypothesis Testing under Normality 

• If s2 is not known, replace it with s2. The 

standard error of the OLS estimator bk is 

SE(bk) =  

 

• Suppose A.1-5 hold. Under H0: 

the t-statistic defined as 

 

                                              ~ t(n-K). 
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Hypothesis Testing under Normality 

• Proof of 

 

                                              ~ t(n-K) 
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Hypothesis Testing under Normality 

• Testing Hypothesis about Individual 

Regression Coefficient, H0: 

– If s2 is known, use zk ~ N(0,1). 

– If s2 is not known, use tk ~ t(n-K). 

Given a level of significance a,  

Prob(-ta/2(n-K) < t < ta/2(n-K)) = 1-a 
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Hypothesis Testing under Normality 

– Confidence Interval 

 

 

[bk-SE(bk) ta/2(n-K), bk+SE(bk) ta/2(n-K)]   

– p-Value: p = Prob(t>|tk|)x2 

Prob(-|tk|<t<|tk|) = 1-p 

since Prob(t>|tk|) = Prob(t<-|tk|). 

Accept H0 if p >a. Reject otherwise. 
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Hypothesis Testing under Normality 

• Linear Hypotheses H0: Rb = q 
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Hypothesis Testing under Normality 

• Let m = Rb-q, where b is the unrestricted least 

squares estimator of b. 
– E(m|X) = E(Rb-q|X) = Rb-q = 0 

– Var(m|X) = Var(Rb-q|X) = RVar(b|X)R′ = s2R(X′X)-1R′  

• Wald Principle 

W = m′Var(m|X)-1m = (Rb-q)′[s2R(X′X)-1R′]-1 (Rb-q) 

~ χ2(J), where J is the number of restrictions 

• Define F = (W/J)/(s2/s2)  

= (Rb-q)′[s2R(X′X)-1R′]-1 (Rb-q)/J 

 

 



Hypothesis Testing under Normality 

• Suppose A.1-5 holds. Under H0: Rb = q, 
where R is JxK with rank(R)=J, the F-

statistic defined as 
 
 
 
 
is distributed as F(J,n-K), the F distribution 
with J and n-K degrees of freedom. 
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Discussions 

• Residuals e = y-Xb ~ N(0,s2M) if s2 is 

known and M = I-X(X′X)-1X′ 

• If s2 is unknown and estimated by s2, 
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Discussions 

• Wald Principle vs. Likelihood Principle: 

By comparing the restricted (R) and 

unrestricted (UR) least squares, the F-

statistic is shown 
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Discussions 

• Testing R2 = 0: 
Equivalently, H0: Rb = q, where 
 
 
 
 
 
 
 
J = K-1, and b1 is the unrestricted constant term. 
The F-statistic follows F(K-1,n-K).  
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Discussions 

• Testing bk = 0: 
Equivalently, H0: Rb = q, where 
 
 
 
 
 
 
 
F(1,n-K) = bk[Est Var(b)]-1

kkbk 
t-ratio: t(n-K) = bk/SE(bk)  
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Discussions 

• t vs. F: 

– t2(n-K) = F(1,n-K) under H0: Rb=q when J=1  

– For J > 1, the F test is preferred to multiple t tests 

• Durbin-Watson Test Statistic for Time Series 
Model: 
 
 
 

– The conditional distribution, and hence the critical 
values, of DW depends on X… 
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Maximum Likelihood 

• Assumption 1, 2, 4, and 5 imply 

y|X ~ N(Xb,s2In) 

• The conditional density or likelihood of y 

given X is 
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Maximum Likelihood 

• Likelihood Function 

L(b,s2) = f(y|X;b,s2)  

• Log Likelihood Function 
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Maximum Likelihood 

• ML estimator of (b,s2)  

= argmax(b,g)log L(b,g), where we set g = s2  
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Maximum Likelihood 

• Suppose Assumptions 1-5 hold. Then the 

ML estimator of b is the OLS estimator b 

and ML estimator of g or s2 is 
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Maximum Likelihood 

• Maximum Likelihood Principle 

– Let q = (b,g) 

– Score: s(q) = log L(q)/q 

– Information Matrix: I(q) = E(s(q)s(q)′|X)  

– Information Matrix Equality: 
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Maximum Likelihood 

• Maximum Likelihood Principle 

– Cramer-Rao Bound: I(q)-1  

That is, for an unbiased estimator of q with a 

finite variance-covariance matrix: 
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Maximum Likelihood 

• Under Assumptions 1-5, the ML or OLS estimator 

b of b with variance s2(X′X)-1 attains the Cramer-

Rao bound. 

• ML estimator of s2 is biased, so the Cramer-Rao 

bound does not apply. 

• OLS estimator of s2, s2 = e′e/(n-K) with E(s2|X) = 

s2 and Var(s2|X) = 2s4/(n-K), does not attain the 

Cramer-Rao bound 2s4/n.  



Discussions 

• Concentrated Log Likelihood Function 
 
 
 
 
 
 
 
 

• Therefore, argmaxb log L(b) = argminb SSR(b) 
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Discussions 

• Hypothesis Testing H0: Rb = q 

– Likelihood Ratio Test 

 

 

– F Test as a Likelihood Ratio Test 
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Discussions 

• Quasi-Maximum Likelihood 

– Without normality (Assumption 5), there is no 
guarantee that ML estimator of b is OLS or that 
the OLS estimator b achieves the Cramer-Rao 
bound. 

– However, b is a quasi- (or pseudo-) maximum 
likelihood estimator, an estimator that 
maximizes a misspecified (normal) likelihood 
function.  



Generalized Least Squares 

• Assumption 4 Revisited: 

E(e′e|X) = Var(e|X) = s2In 

• Assumption 4 Relaxed (Assumption 4’): 

E(e′e|X) = Var(e|X) = s2V(X), with 

nonsingular and known V(X). 

– OLS estimator of b, b=(X′X)-1X′y, is not 

efficient although it is still unbiased. 

– t-test and F-test are no longer valid. 



Generalized Least Squares 

• Since V=V(X) is known, V-1 = C′C  

• Let y* = Cy, X* = CX, e* = Ce 

• y = Xb + e  y* = X*b + e*  

– Checking A.2: E(e*|X*) = E(e*|X) = 0  

– Checking A.4: E(e*e*′|X*) = E(e*e*′|X) = 
s2CVC′ = s2In 

• GLS: OLS for the transformed model 
y* = X*b + e*  



Generalized Least Squares 

• bGLS = (X*′X*)-1X*′y* = (X′V-1X)-1X′V-1y 

• Var(bGLS|X) = s2(X*′X*)-1 = s2 (X′V-1X)-1 

• If V = V(X) = Var(e|X)/s2 is known, 

– bGLS = (X′[Var(e|X)]-1X)-1X′[Var(e|X)]-1y 

– Var(bGLS|X) = (X′[Var(e|X)]-1X)-1 

– GLS estimator bGLS of b is BLUE.  



Generalized Least Squares 

• Under Assumption 1-3, E(bGLS|X) = b. 

• Under Assumption 1-3, and 4’,  
Var(bGLS|X) =s2 (X′V(X)-1X)-1 

• Under Assumption 1-3, and 4’, the GLS 
estimator is efficient in that the conditional 
variance of any unbiased estimator that is 
linear in y is greater than or equal to 
[Var(bGLS|X)]. 



Discussions 

• Weighted Least Squares (WLS) 

– Assumption 4”: V(X) is a diagonal matrix, or 
E(ei

2|X) = Var(ei|X) = s2vi(X) 
 
Then 
 
 
 

– WLS is a special case of GLS. 
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Discussions 

• If V = V(X) is not known, we can estimate 

its functional form from the sample. This 

approach is called the Feasible GLS. V 

becomes a random variable, then very little 

is known about the distribution and finite 

sample properties of the GLS estimator. 



Example 

• Cobb-Douglas Cost Function for Electricity Generation 
(Christensen and Greene [1976]) 

• Data: Greene’s Table F4.3  
– Id = Observation, 123 + 35 holding companies 

– Year = 1970 for all observations  

– Cost = Total cost,  

– Q = Total output,  

– Pl = Wage rate,  

– Sl = Cost share for labor ,  

– Pk = Capital price index,  

– Sk = Cost share for capital,  

– Pf = Fuel price,  

– Sf = Cost share for fuel  



Example 

• Cobb-Douglas Cost Function for Electricity 

Generation (Christensen and Greene [1976]) 

– ln(Cost) = b1 + b2ln(PL) + b3ln(PK) + b4ln(PF) + 

b5ln(Q) + ½b6ln(Q)^2 + b7ln(Q)*ln(PL) + 

b8ln(Q)*ln(PK) + b9ln(Q)*ln(PF) + e 

– Linear Homogeneity in Prices: 

•  b2+b3+b4=1, b7+b8+b9=0 

– Imposing Restrictions: 

• ln(Cost/PF) = b1 + b2ln(PL/PF) + b3ln(PK/PF) + b5ln(Q) + 

½b6ln(Q)^2 + b7ln(Q)*ln(PL/PF) + b8ln(Q)*ln(PK/PF) + e 


