Classical Linear Regression Model

* Normality Assumption

« Hypothesis Testing Under Normality
« Maximum Likelihood Estimator

» Generalized Least Squares



Normality Assumption

» Assumption 5
g|X ~ N(0,6%1 )

 Implications of Normality Assumption
— (b-B)[X ~ N(0,5(X"X)™)
— (b-BIX ~ N(O, (X" X) ] )

Z, = b~ 5 ~ N(0,2)
Jo X X)




Hypothesis Testing under Normality

 Implications of Normality Assumption
— Because &;/c ~ N(0,1),

(n— 5)32 _ e_';e _ (Ej ‘M (ij ~ y°(trace(M))

O O O O

where M = I-X(X'X)1X" and trace(M) = n-K.



Hypothesis Testing under Normality

* If o2 is not known, replace it with s2. The
standard error of the OLS estimator 3, IS

SE(B) = /s?[(X'X) ]

» Suppose A.1-5 hold. Under H,: By = B
the t-statistic defined as

tk:bk_gk _ b, — By
SE (b, ) \/52[(X' X) Y, t(n-K).




Hypothesis Testing under Normality

e Proof of
by — B by — B
P k Tk ~ t(n-K
<" SE(b,) VSO X) M ()
bk_Bk
\/0'2[(XIX)_1]kk _ N(0,1) =t(n-K)

(n—K)s?/ o2 \/;/(n—K)
n—K n—K



Hypothesis Testing under Normality

 Testing Hypothesis about Individual
Regression Coefficient, H,: B, =B,
— If o2 is known, use z, ~ N(0,1).
— If &2 is not known, use t, ~ t(n-K).

Given a level of significance a,
Prob(-t_,(n-K) <t<t_,(n-K)) = 1-a

b, — B,
—1 n-K)<—X K<t n—K




Hypothesis Testing under Normality

— Confidence Interval
by —SE(by)te/»(n—K) < By <by +SE(by)t, 2 (N~ K)

b,-SE(by) t,2(n-K), b +SE(b,) t,/,(n-K)]
— p-Value: p = Prob(t>|t, |)x2
Prob(-[t|<t<|t,]) = 1-p

since Prob(t>[t,|) = Prob(t<-|t,|).

Accept H, If p >a. Reject otherwise.




Hypothesis Testing under Normality

 Linear Hypotheses Hy: RB =q

., T o T :81 g
y T oo Ty :Bz g,
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Hypothesis Testing under Normality

* Let m = Rb-q, where b Is the unrestricted least
squares estimator of f3.
— E(m|X) = E(Rb-g|X) =Rp-q=0
— Var(m|X) = Var(Rb-q|X) = RVar(b|X)R’ = 6?R(X'X) 1R’
« Wald Principle
W = m'Var(m|X)'m = (Rb-q)'[¢°R(X'X)R'] (Rb-q)
~v?(J), where J is the number of restrictions
« Define F = (W/)/(s%/c?)
= (Rb-q)'[s°R(X'X)1R']* (Rb-q)/]



Hypothesis Testing under Normality

 Suppose A.1-5 holds. Under Hy: RB =q,
where R 1s JxK with rank(R)=J, the F-

statistic defined as
_(Rb-g) [R(X'X)'RT*(Rb—q)/]

SZ

= (Rb—q){R[EstVar(b|X)]JR}*(Rb-q)/J

IS distributed as F(J,n-K), the F distribution
with J and n-K degrees of freedom.

F




DI1ScussIons

« Residuals e = y-Xb ~ N(0,6°M) if c%is
known and M = [-X(X'X)1X'
* If 6%is unknown and estimated by s?,

€
JST I, (X X) ;]
1=1,2,...,n

~t(n-K)




DI1ScussIons

« Wald Principle vs. Likelihood Principle:
By comparing the restricted (R) and
unrestricted (UR) least squares, the F-
statistic i1s shown

SRR I (Re-RY/
T USSR, /(N-K)  (1-R%)/(n—K)




DI1ScussIons

« Testing R? =0:
Equivalently, H,: RB = q, where

0 1 0 - OB, ] [0
001 - OB, | |O

o0 - 1|Bk] (O

J = K-1, and B, Is the unrestricted constant term.
The F-statistic follows F(K-1,n-K).



DI1ScussIons

 Testing B, = O:
Equivalently, H,: RB = q, where

P

[o o -.. 1 --. 0] '6:2

B
F(1,n-K) = b, [Est Var(b)]*,.b,
t-ratio: t{n-K) = b, /SE(by)



DI1ScussIons

e tvs. F:

— t?(n-K) = F(1,n-K) under H,: RB=q when J=1

— For J > 1, the F test is preferred to multiple t tests
« Durbin-Watson Test Statistic for Time Series

Model: ] )
DW — ZizZ (el o ei—l)

n 2
i=1ei

— The conditional distribution, and hence the critical
values, of DW depends on X...



Maximum Likelithood

« Assumption 1, 2, 4, and 5 imply
yIX ~N(XB,c°l,)

« The conditional density or likelihood of y
given X Is

f(y[X:B,0%) = (2nc”) " exp [_2—3;2 (y—XB)'(y - XB)}



Maximum Likelithood

 Likelthood Function
L(B,c°) = f(yIX;B,c%)
 Log Likelthood Function
log L(B, 5%)
n

——|09(27T)—§|09(G )——2 (y —XB)'(y — XB)
@)
N

— —Elog(Zn) —g log(c )_%SSR (B)



Maximum Likelithood

« ML estimator of (B,c?)
= argmax g ,log L(B,y), where we set y = ¢*

ologL(B,y) 1 OSSR(B) _
B 2y B
ologL(B.v) __n 1

> "2y 22 SSR (B) =0

0




Maximum Likelithood

« Suppose Assumptions 1-5 hold. Then the
ML estimator of 8 Is the OLS estimator b
and ML estimator of y or o2 is

SSR e'e n-K

n n n

SZ



Maximum Likelithood

« Maximum Likelihood Principle
—Let 6 =(B.y)
— Score: s(0) = olog L(0)/06
— Information Matrix: 1(0) = E(s(0)s(0)’|X)
— Information Matrix Equality:
1

-2 1 | 5X'X 0
1(0) = —E 0° log L(0) |
0000 0 n
B - 4
i 26 _




Maximum Likelithood

« Maximum Likelihood Principle

— Cramer-Rao Bound: 1(06)
That 1s, for an unbiased estimator of @ with a
finite variance-covariance matrix:

A SZXX)T 0
Var (0) > 1(0) ™ = ) 254
i n |




Maximum Likelithood

» Under Assumptions 1-5, the ML or OLS estimator
b of B with variance o2(X'X) attains the Cramer-
Rao bound.

« ML estimator of o2 is biased, so the Cramer-Rao
bound does not apply.

« OLS estimator of 62, s? = e'e/(n-K) with E(s?|X) =
o2 and Var(s?|X) = 26%/(n-K), does not attain the
Cramer-Rao bound 2c4/n.



DI1ScussIons

« Concentrated Log Likelihood Function

log L.(B) =log L(B,SSR (B)/n)
_ —g log( 27) —%Iog(SSR (B)/ ) —g

=~ [log(2/n) +1]- - 1og(SSR (B))

» Therefore, argmaxg log L(B) = argming SSR(P)



DI1ScussIons

« Hypothesis Testing Hy: RB =@
— Likelthood Ratio Test

n/2
A :ﬂ :£ SSR g

— F Test as a Likelihood Ratio Test

- _ (SSRg —SSR )/
SSR g /(N = K)

7 SSR




DI1ScussIons

« Quasi-Maximum Likelihood

— Without normality (Assumption 5), there Is no
guarantee that ML estimator of 3 i1s OLS or that
the OLS estimator b achieves the Cramer-Rao
bound.

— However, b is a quasi- (or pseudo-) maximum
likelihood estimator, an estimator that
maximizes a misspecified (normal) likelihood
function.



Generalized Least Squares

« Assumption 4 Revisited:
E(e’e|X) = Var(g|X) = 6%l

* Assumption 4 Relaxed (Assumption 4°):
E(g'e|X) = Var(g|X) = o2V(X), with
nonsingular and known V(X).

— OLS estimator of B, b=(X'X)1X"y, is not
efficient although it is still unbiased.

— t-test and F-test are no longer valid.



Generalized Least Squares

Since V=V(X) is known, V-1 =C'C

Lety*=Cy, X"=CX, ¢"=Cs¢

y=XBp+te=y =XB+¢g

— Checking A.2: E(g"|X") = E(g|X) =0

— Checking A.4: E(e'€”|X") = E(e'¢"'|X) =
c’CVC' =%l

GLS: OLS for the transformed model

y =XPp+e



Generalized Least Squares

* bgLs = (XTX)IXTY" = (XVAX) X' Vly
« Var(bg ¢/X) = a?(X"X) 1= o2 (X'V1X)1
« IfV=V(X)=Var(g|X)/o?is known,
- beLs = (X'[Var(e[X)[ X)X [Var(e[X)] 'y
— Var(bg ¢|X) = (X'[Var(e[X)[*X)
— GLS estimator b, s of B Is BLUE.



Generalized Least Squares

 Under Assumption 1-3, E(bg, ¢|X) = B.

« Under Assumption 1-3, and 4°,
Var(bg ¢|X) =a? (X'V(X)1X)

« Under Assumption 1-3, and 4°, the GLS
estimator is efficient in that the conditional
variance of any unbiased estimator that Is

linear In y Is greater than or equal to
[Var(bg s[X)]:



DI1ScussIons

« Weighted Least Squares (WLS)

— Assumption 4’: V(X) Is a diagonal matrix, or
E(e2X) = Var(g|X) = 62v,(X)

Then vy = Yi X: X

"0 T )
(i=12,....n)

— WLS is a special case of GLS.



DI1ScussIons

« IfV =V(X) is not known, we can estimate
Its functional form from the sample. This
approach is called the Feasible GLS. V
becomes a random variable, then very little
IS known about the distribution and finite
sample properties of the GLS estimator.



Example

» Cobb-Douglas Cost Function for Electricity Generation
(Christensen and Greene [1976])

« Data: Greene’s Table F4.3
— 1d = Observation, 123 + 35 holding companies
— Year =1970 for all observations
— Cost = Total cost,
— Q = Total output,
— Pl =Wage rate,
— Sl = Cost share for labor ,
— Pk = Capital price index,
— Sk = Cost share for capital,
— Pf = Fuel price,
— Sf = Cost share for fuel



Example

» Cobb-Douglas Cost Function for Electricity

Generation (Christensen and Greene [1976])
— In(Cost) = B, + B,In(PL) + B5In(PK) + B,In(PF) +
BsIn(Q) + V2P¢In(Q)*2 + B,In(Q)*In(PL) +
BeIn(Q)*In(PK) + BgIn(Q)*In(PF) + &
— Linear Homogeneity in Prices:
* B+BstPBs=l, BrtPgtPe=0
— Imposing Restrictions:

+ In(COSt/PF) = B, + B,IN(PL/PF) + B,In(PK/PF) + B<In(Q) +
Y2BIN(Q)"2 + B,IN(Q)*IN(PL/PF) + BIn(Q)*IN(PK/PF) + ¢



