Classical Linear Regression Model

- Finite Sample Properties of OLS
- Restricted Least Squares
- Specification Errors
- Omitted Variables
- Irreverent Variables

Finite Sample Properties of OLS

- Finite Sample Properties of \mathbf{b} $\mathbf{b}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}$
- Under A.1-3, $\mathrm{E}(\mathbf{b} \mid \mathbf{X})=\boldsymbol{\beta}$
- Under A.1-4, $\operatorname{Var}(\mathbf{b} \mid \mathbf{X})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
- Under A.1-4, the OLS estimator is efficient in the class of linear unbiased estimators (GaussMarkov Theorem).

Finite Sample Properties of OLS

- Proof of Gauss-Markov Theorem
$-\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}, \operatorname{Var}(\mathbf{b} \mid \mathbf{X})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
- Let $\mathbf{d}=\mathbf{A y}$ be another linear unbiased estimator of $\boldsymbol{\beta}$, where $\mathbf{A}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{C}$ and $\mathbf{C} \neq \mathbf{0}, \mathbf{C X}=\mathbf{0}$
- $\mathrm{E}(\mathbf{d} \mid \mathbf{X})=\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{C}\right)(\mathbf{X} \boldsymbol{\beta}+\varepsilon)[\mathbf{X}]=\boldsymbol{\beta}$
- $\operatorname{Var}(\mathbf{d} \mid \mathbf{X})=\operatorname{Var}(\mathbf{A y} \mid \mathbf{X})$
$=\sigma^{2}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{C}\right)\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{C}\right)^{\prime}$
$=\sigma^{2}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\mathbf{C C}^{\prime}\right)$
$=\operatorname{Var}(\mathbf{b} \mid \mathbf{X})+\sigma^{2} \mathbf{C C}^{\prime}$
- Therefore, $\operatorname{Var}(\mathbf{d} \mid \mathbf{X}) \geq \operatorname{Var}(\mathbf{b} \mid \mathbf{X})$

Finite Sample Properties of OLS

- OLS estimator is BLUE. Assumption 2 (exogeneity) plays an important role to establish these results:
- \mathbf{b} is linear in \mathbf{y} and $\boldsymbol{\varepsilon}$.
$-\mathbf{b}$ is unbiased estimator of $\boldsymbol{\beta}$: $\mathrm{E}(\mathbf{b})=\mathrm{E}(\mathrm{E}(\mathbf{b} \mid \mathrm{X}))=\boldsymbol{\beta}$
$-\mathbf{b}$ is efficient or best: $\operatorname{Var}(\mathbf{b})=\mathrm{E}(\operatorname{Var}(\mathbf{b} \mid \mathrm{X}))$ is the minimum variancecovariance matrix

Finite Sample Properties of OLS

- The relationship between s^{2} and σ^{2}
$-\mathrm{s}^{2}=\mathbf{e}^{\prime} \mathbf{e} /(\mathrm{n}-\mathrm{K}), \mathbf{e}=\mathbf{y}-\mathbf{X b}$
- Finite Sample Properties of s^{2}
- Under A.1-4, $\mathrm{E}\left(\mathrm{s}^{2} \mid \mathbf{X}\right)=\sigma^{2}\left(\right.$ and hence $\left.\mathrm{E}\left(\mathrm{s}^{2}\right)=\sigma^{2}\right)$, provided n > K.

Finite Sample Properties of OLS

- Proof of $E\left(s^{2} \mid \mathbf{X}\right)=\sigma^{2}$: s^{2} is an unbiased estimator of σ^{2} (Recall: $s^{2}=\mathbf{e}^{\prime} \mathbf{e} /(\mathrm{n}-\mathrm{K}), \mathbf{e}=\mathbf{M} \boldsymbol{\varepsilon}$, $\left.\mathbf{M}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)$
$-\mathrm{E}\left(\mathbf{e}^{\prime} \mathbf{e} \mid \mathbf{X}\right)=\mathrm{E}\left(\boldsymbol{\varepsilon}^{\prime} \mathbf{M} \boldsymbol{\varepsilon} \mid \mathbf{X}\right)=\mathrm{E}\left(\operatorname{trace}\left(\boldsymbol{\varepsilon}^{\prime} \mathbf{M} \boldsymbol{\varepsilon}\right) \mid \mathbf{X}\right)$
$=\mathrm{E}\left(\operatorname{trace}\left(\mathbf{M} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime}\right) \mid \mathbf{X}\right)=\operatorname{trace}\left(\mathbf{M E}\left(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right)\right)$
$=\operatorname{trace}\left(\mathbf{M} \sigma^{2} \mathbf{I}\right)=\sigma^{2} \operatorname{trace}(\mathbf{M})=\sigma^{2}(\mathrm{n}-\mathrm{K})$
- Therefore, $\mathrm{E}\left(\mathrm{s}^{2} \mid \mathbf{X}\right)=\mathrm{E}\left(\mathbf{e}^{\prime} \mathbf{e} /(\mathrm{n}-\mathrm{K}) \mid \mathbf{X}\right)=\sigma^{2}$

Finite Sample Properties of OLS

- Estimate of $\operatorname{Var}(\mathbf{b} \mid \mathbf{X})=s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
- Standard Errors
$\mathrm{SE}\left(\mathrm{b}_{\mathrm{k}}\right)=\sqrt{\mathrm{s}^{2}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{\mathrm{kk}}}$

Restricted Least Squares

- $\mathbf{b}^{*}=\operatorname{argmin}_{\boldsymbol{\beta}} \operatorname{SSR}(\boldsymbol{\beta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$ s.t. $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$
- $\left(\mathbf{b}^{*}, \lambda^{*}\right)=\operatorname{argmin}_{(\beta, \lambda)} \operatorname{SSR}^{*}(\beta, \lambda)$

$$
=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\lambda^{\prime}(\mathbf{R} \boldsymbol{\beta}-\mathbf{q})
$$

R: $J_{X} K$ restriction matrix
$\mathbf{q}: \mathrm{J}_{\times 1}$ vector of restricted values
λ : $\mathrm{J}_{\mathrm{X}} 1$ vector of Langrangian multiplier

Restricted Least Squares

- Linear Restrictions: $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$

$$
\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 K} \\
r_{21} & r_{22} & \cdots & r_{2 K} \\
\vdots & \vdots & \vdots & \vdots \\
r_{J 1} & r_{J 2} & \cdots & r_{J K}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{K}
\end{array}\right]=\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{J}
\end{array}\right]
$$

Algebra of Restricted Least Squares

- $\partial \operatorname{SSR}^{*}(\boldsymbol{\beta}, \boldsymbol{\lambda}) / \partial \boldsymbol{\beta}=-2 \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\mathbf{R}^{\prime} \boldsymbol{\lambda}=\mathbf{0}$
$\partial \operatorname{SSR}^{*}(\boldsymbol{\beta}, \lambda) / \partial \boldsymbol{\lambda}=\mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$
- $\lambda^{*}=2\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}-\mathbf{q}\right]$
$\mathbf{b}^{*}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{X}^{\prime} \mathbf{y}-1 / 2\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda^{*}$
$=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{X} \mathbf{y}-\mathbf{q}\right]$
$=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})$
- $\mathbf{e}^{*}=\mathbf{y}-\mathbf{X b}^{*}=\mathbf{e}+\mathbf{X}\left(\mathbf{b}-\mathbf{b}^{*}\right)$
$\mathbf{e}^{* \prime} \mathbf{e}^{*}=\mathbf{e}^{\prime} \mathbf{e}+\left(\mathbf{b}-\mathbf{b}^{*}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{b}-\mathbf{b}^{*}\right)>\mathbf{e}^{\prime} \mathbf{e}$
$\mathbf{e}^{* \prime} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}=(\mathbf{R b}-\mathbf{q})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})$
- $E\left(\mathbf{b}^{*} * \mathbf{X}\right)=\boldsymbol{\beta}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}[\mathbf{R} \boldsymbol{\beta}-\mathbf{q}]$
$\mathrm{E}\left(\mathbf{b}^{*} \mid \mathbf{X}\right) \neq \boldsymbol{\beta}$ unless $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$
- $\operatorname{Var}\left(\mathbf{b}^{*} \mid \mathbf{X}\right)=\operatorname{Var}(\mathbf{b} \mid \mathbf{X})-\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$

Discussions

- Linear regression without constant term (or intercept), a special case of restricted least squares.
- Restricted least squares estimator is biased if the restriction is incorrectly specified.

Application: Specification Errors

- Omitting relevant variables: Suppose the correct model is $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$. That is, two sets of variables. Compute least squares omitting \mathbf{X}_{2}. Some easily proved results:
- $\operatorname{Var}\left[\mathbf{b}_{1}\right]$ is smaller than $\operatorname{Var}\left[\mathbf{b}_{1.2}\right]$. (The latter is the northwest sub-matrix of the full covariance matrix. The proof uses the residual maker (again!). That is, you get a smaller variance when you omit \mathbf{X}_{2}. (One interpretation: Omitting \mathbf{X}_{2} amounts to using extra information $\left(\boldsymbol{\beta}_{2}=\mathbf{0}\right)$. Even if the information is wrong, it reduces the variance.

Application: Specification Errors

- $\mathrm{E}\left[\mathbf{b}_{1}\right]=\boldsymbol{\beta}_{1}+\left(\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{\prime}} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}} \boldsymbol{\beta}_{2} \neq \boldsymbol{\beta}_{1}$. So, \mathbf{b}_{1} is biased.(!!!) The bias can be huge. Can reverse the sign of a price coefficient in a "demand equation."
- b_{1} may be more "precise."

Precision = Mean squared error
$=$ variance + squared bias.
Smaller variance but positive bias. If bias is small, may still favor the short regression.

- Suppose $\mathbf{X}_{1}{ }^{\prime} \mathbf{X}_{2}=\mathbf{0}$. Then the bias goes away. Interpretation, the information is not "right," it is irrelevant. \mathbf{b}_{1} is the same as $\mathbf{b}_{1.2}$.

Application: Specification Errors

- Including superfluous variables: Just reverse the results.
- Including superfluous variables increases variance. (The cost of not using information.)
- Does not cause a bias, because if the variables in \mathbf{X}_{2} are truly superfluous, then $\boldsymbol{\beta}_{2}$ $=\mathbf{0}$, so $\mathrm{E}\left[\mathbf{b}_{1.2}\right]=\boldsymbol{\beta}_{1}$.

Example

- Linear Regression Model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
$\mathrm{G}=\beta_{0}+\beta_{1} \mathrm{PG}+\beta_{2} \mathrm{Y}+\beta_{3} \mathrm{PNC}+\beta_{4} \mathrm{PUC}+\varepsilon$ $\mathbf{y}=\mathrm{G} ; \mathbf{X}=[1 \mathrm{PG}$ Y PNC PUC $]$
Note: All variables are log transformed.
- Linear Restrictions: $\mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$
$\beta_{3}=\beta_{4}=0$

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]-\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

