The Paradigm of Econometrics

Based on Greene's Note 1

Econometrics: Paradigm

Theoretical foundations

- Microeconometrics and macroeconometrics
- Behavioral modeling: Optimization, labor supply, demand equations, etc.
- Statistical foundations
- Mathematical Elements
- Model' building the econometric model
 - Mathematical elements
 - The underlying truth is there one?
 - What is `bias' in model estimation?

Why Use This Framework?

- Understanding covariation
- Understanding the relationship:
 - Estimation of quantities of interest such as elasticities
- Prediction of the outcome of interest
- Controlling future outcomes using knowledge of relationships

Measurement as Observation

Inference

Model Building in Econometrics

- Role of the assumptions
- □ Sharpness of inferences
- Parameterizing the model
 - Nonparametric analysis
 - Semiparametric analysis
 - Parametric analysis
- Application: Is there a relationship between investment and capital stock? (10 firms, 20 years)

Nonparametric Regression

What are the assumptions? What are the conclusions?

Semiparametric Regression

Investment_{i,t} = a + b*Capital_{i,t} + u_{i,t}
 Median[u_{i,t} | Capital_{i,t}] = 0

Least Absolute Deviations $\hat{F}(x) = \hat{a} + \hat{b}x$ $\hat{a}, \hat{b} = \text{ArgMin}_{a,b} \sum_{i=1}^{N} |y_i - a - bx_i|$

Parametric Regression

□ Investment_{i,t} = a + b*Capital_{i,t} + u_{i,t} □ u_{i,t} | Capital_{j,s} ~ N[0, σ^2] for all i,j,s,t

Least Squares Regression $\hat{F}(x) = \hat{a} + \hat{b}x$ $\hat{a}, \hat{b} = \operatorname{ArgMin}_{a,b} \sum_{i=1}^{N} (y_i - a - bx_i)^2$ $= \left[\sum_{i=1}^{N} {\binom{1}{x_i}} {\binom{1}{x_i}}^{\prime} \right]^{-1} \left[\sum_{i=1}^{N} {\binom{1}{x_i}} y_i \right]$

Estimation Platforms

- □ The "best use" of a body of data
- □ The accretion of knowledge
- Model based
 - Kernels and smoothing methods (nonparametric)
 - Moments and quantiles (semiparametric)
 - Likelihood and M- estimators (parametric)
- Methodology based (?)
 - Classical parametric and semiparametric
 - Bayesian strongly parametric

The Sample and Measurement

Classical Inference

Imprecise inference about the entire population – sampling theory and asymptotics

Bayesian Inference

Sharp, 'exact' inference about only the sample – the 'posterior' density.

Classical vs. Bayesian Inference

- Both posit a "relationship" among variables
- They differ on the nature of " parameters" (What is a parameter?)
- Classical can be nonparametric and robust;
 Bayesian is strongly parametric, and fragile
- Bayesian <u>can</u> accumulate knowledge (do they?); every classical application is the first.

Empirical Research

- Iterative search for information about the structure
- Specification searches
 - Stepwise modeling, data mining, etc.
 - Leamer on specification searching and significance levels
 - Judge, et al. on sequential inference and pretesting
 - Hendry on the encompassing principle "general to specific"
- Classical estimation and inference

Data Structures

- Observation mechanisms
 - Passive, nonexperimental
 - Active, experimental
 - The `natural experiment'
- Data types
 - Cross section
 - Pure time series
 - Panel longitudinal data
 - Financial data

Econometric Models

- Linear; static and dynamic
- Discrete choice
- Censoring and truncation
- Structural models and demand systems

Estimation Methods and Applications

- □ Least squares etc. OLS, GLS, LAD, quantile
- Maximum likelihood
 - Formal ML
 - Maximum simulated likelihood
 - Robust and M- estimation
- Instrumental variables and GMM
- Bayesian estimation Markov Chain Monte Carlo methods

Estimation and Inference

- Estimators: Models and estimators
- Properties of Estimators

	Classical	Bayesian
Finite Sample	Almost none	Almost all
Asymptotic	Most	Also almost all?

- Hypothesis tests
- □ Analysis of empirical results

Trends in Econometrics

- Small structural models vs. large scale multiple equation models
- Parametric vs. non- and semiparametric methods
- Robust methods GMM (paradigm shift?)
- Unit roots, cointegration and macroeconometrics
- Nonlinear modeling and the role of software
- Behavioral and structural modeling vs. "covariance analysis" – pervasiveness of the econometrics paradigm

4 Golden Rules of Econometrics

- Think brilliantly
- □ Be infinitely creative
- Be outstandingly lucky
- Otherwise, stick to being a theorist
 - -David Hendry