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Abstract. In this paper we study the sum
∑

p≤x τ(np), where τ(n) denotes the number

of divisors of n, and {np} is a sequence of integers indexed by primes. Under certain
assumptions we show that the aforementioned sum is� x as x→∞. As an application, we
consider the case where the sequence is given by the Fourier coefficients of a modular form.
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1. Introduction

Starting with the early work of Bellman and Shapiro, Erdős, and Hooley in the 1950s,
there has been an interest in estimating the average number of divisors over polynomial
values. Given an irreducible polynomial F (x) ∈ Z[x], a classical result of Erdős [Erd52]
asserts that

x log x�
∑
n≤x

τ(F (n))� x log x, as x→∞. (1)

In the case of a quadratic polynomial F , this can be strengthened to give an asymptotic
formula of the form

∑
n≤x τ(F (n)) ∼ λx log x for some constant λ depending on F (see

[McK95] and [McK99] for an expression of λ in terms of Hurwitz class numbers). No such
results have been shown for polynomials of higher degree.

Another averaging result mentioned in [Erd52], this time over primes p, is that∑
p≤x

τ(F (p))� x. (2)

When F (x) = x + a, a 6= 0, we obtain the Titchmarsh divisor problem, which is concerned
with the average number of divisors over shifted primes. As it is well known, one has again
an asymptotic formula

∑
p≤x τ(p+ a) ∼ Cx, for some explicit constant C depending on a.

Motivated by the Titchmarsh divisor problem, one can study the behavior of∑
p≤x

τ(np), (3)

where the np’s are quantities of arithmetic significance, such as natural invariants associated
to objects arising from arithmetic geometry. In this direction, Akbary and Ghioca [AG12]
examined a version of geometric flavor, in the context of abelian varieties.

Another notable result is due to Pollack [Pol16b], who investigated the average number of
divisors of |E(Fp)|, for elliptic curves E over Q. Pollack’s strategy is based on a refinement
of Erdős’s original idea from [Erd52], which is also outlined in Elsholtz and Tao [ET13,
Section 7]. A remark in [Pol16b] suggests that Erdős’s method is amenable to the sum in (3)
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when the np’s are given by the Fourier coefficients of a cuspidal eigenform without complex
multiplication (non-CM).

The purpose of this note is to supply a proof of the above remark. In fact, we consider
a somewhat more general setting that includes sequences {np} of integers indexed by prime
numbers, subject to two assumptions:

• (H1) There exists a fixed positive integer k such that |np| ≤ pk for all primes p.
• (H2) There exists a fixed number c ∈ (0, 1) such that

#{p ≤ x | np 6= 0 and np ≡ 0 (mod m)} � π(x)

ϕ(m)
,

holds uniformly for all positive integers m ≤ xc, and the implied constant depends
only on the sequence. As usual, π(x) =

∑
p≤x 1 and ϕ is Euler’s totient function.

Theorem 1.1. Let {np} be a sequence of integers indexed by prime numbers, for which (H1)
and (H2) hold. Then ∑

p≤x
np 6=0

τ(np)� x as x→∞.

It is important to recognize that another paper of Pollack [Pol16a] gives, under some
assumptions, an upper bound for sums of the form

∑
n≤x anτr(n), where {an} is a sequence

of nonnegative real numbers and τr(n) is the r-fold divisor function. In principle, it should
be possible to recover Theorem 1.1 by following the line of reasoning from [Pol16b], with
some modifications. Nonetheless, we have included an argument in order to give a complete
proof of the following result, which is our main focus.

Corollary 1.2. Let f =
∑

n≥1 anq
n be a non-CM newform of weight k ≥ 2 with integer

Fourier coefficients. Then under GRH we have that∑
p≤x
ap 6=0

τ(ap)� x as x→∞. (4)

Corollary (1.2) improves an estimate of Gun and Murty [GM14], who showed that

x�
∑
p≤x
ap 6=0

τ(ap)� x(log x)A, (5)

for some absolute constant A depending on f . The assumption on the Generalized Riemann
Hypothesis (GRH) is required, as in [GM14], for the use of an effective version of the Cheb-
otarev density theorem, which allows for the verification of (H2). Combining (4) with the
lower bound from (5) it follows that, conditional on GRH, the order of magnitude for the
divisor sum over Fourier coefficients is x. In the spirit of the Titchmarsh divisor problem,
it would not be unreasonable to expect that this sum is in fact asymptotic to Cx, for some
constant C depending on f . However, establishing this asymptotic relation may be beyond
the capabilities of the current methods, even under GRH.
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2. Preliminaries

In this section, we briefly recall some key facts about smooth numbers, which are then
used to establish two technical results that will play a role in the proof of Theorem 1.1.

For X ≥ Y ≥ 2, denote by S(X, Y ) the set of all positive integers not exceeding X and
free of any prime divisors larger than Y . These numbers are sometimes referred to as being
Y -smooth, or Y -friable. Also denote by Ψ(X, Y ) the cardinality of S(X, Y ), and by u the
ratio logX/ log Y .

In the range

1 ≤ u ≤ (1− ε) log x

log log x

with ε > 0 being fixed, it is known that

Ψ(X, Y )� X exp

(
−u log u

2

)
. (6)

This follows, for example, from the Corollary in [CEP83, Page 15].
Another standard result [Mor13, Page 790] is that

Ψ(X, (logX)α) = X1−1/α+O(1/ log logX) (7)

for any fixed α > 1.
We now use the estimates (6) and (7) to sum over certain smooth numbers the functions

1/n and 1/ϕ(n), respectively.

Lemma 2.1. Assume c ∈ (0, 1) is a constant. If r ≥ 1/c is a large enough integer in the
range x1/r > (log x)2, then letting x→∞ we have∑

d∈S(xc,x1/r), d≥xc/4

1

d
� (log x) exp

(
−cr log r

8

)
.

If x1/r ≤ (log x)2 then the above sum is � x−δ for some δ > 0.

Proof. Note that ∑
d∈S(xc,x1/r), d≥xc/4

1

d
=

∫ xc

xc/4

dΨ(t, x1/r)

t

=
Ψ(xc, x1/r)

xc
− Ψ(xc/4, x1/r)

xc/4
+

∫ xc

xc/4

Ψ(t, x1/r)

t2
dt.

If x1/r > (log x)2 then by (6) we get

Ψ(t, x1/r)� t exp

(
−cr log r

8

)
,

and, as a result, the required sum of 1/d is bounded by (log x) exp(−cr log r/8).
Now assume that x1/r ≤ (log x)2. We also suppose that x is large enough so that log x ≥

(4/c)4. Then (log t)8/3 ≥ (log x)2 whenever t ≥ xc/4. Using (7) we get

Ψ(t, x1/r) ≤ Ψ(t, (log t)8/3) = t5/8+O(1/ log log t),
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which is eventually bounded by t3/4, as t tends to infinity (with x). It follows that the
required sum of 1/d is bounded by some negative power of x.

�

Lemma 2.2. With the notation from Lemma 2.1, we have∑
d∈S(xc,x1/r), d≥xc/4

1

ϕ(d)
� (log x) exp

(
−cr log r

16

)
if x1/r > (log x)2. Otherwise, the sum is � x−δ(log log x) for some δ > 0.

Proof. For the first statement, we use the Cauchy-Schwarz inequality ∑
d∈S(xc,x1/r), d≥xc/4

1

φ(d)

2

�

(∑
d≤xc

d

φ(d)2

) ∑
d∈S(xc,x1/r), d≥xc/4

1

d

 .

Since
∑

d≤X

(
d

φ(d)

)2
� X, summation by parts gives∑

d≤X

d

φ(d)2
=
∑
d≤X

(
d

φ(d)

)2
1

d
� logX.

The conclusion now follows from Lemma 2.1. The second statement is also a consequence
of Lemma 2.1 and the inequality

1

ϕ(d)
� log log d

d
.

�

3. Proof of the Theorem

Our goal is to show that ∑
p≤x
np 6=0

τ(np) (8)

is � x as x → ∞. To this end, we will employ the method developed originally by Erdős
in [Erd52], and refined by Elsholtz and Tao [ET13]. We follow closely an adaptation of this
method due to Pollack [Pol16b] (see also [Pol16a]), who applied it in the context of elliptic
curves.

For every nonzero term of the sequence np we consider its prime factorization:

|np| = p1 . . . pJ , (9)

where the prime factors are arranged in nondecreasing order, and repetitions are allowed.
Pick the largest index j ≤ J such that

p1 . . . pj ≤ xc. (10)

If no such index exists (i.e., j = 0), then all prime divisors of np are greater than xc, and
so τ(np) = O(1) by the assumption (H1). The contribution of these terms np towards (8) is
trivially � x. Hence, without loss of generality, we may assume that j ≥ 1.
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Next we consider the terms np for which the corresponding quantities J and j are close,
that is J − j = O(1). In this case, the submultiplicative property of the divisor function τ ,
in combination with (10), implies that

τ(np) ≤ τ(p1 . . . pj)τ(pj+1) . . . τ(pJ)

≤ τ(p1 . . . pj)2
O(1)

�
∑
d≤xc

np≡0 (mod d)

1.

It follows that the contribution of all the primes of this type towards (8) is at most∑
d≤xc

#{p ≤ x | np 6= 0 and np ≡ 0 (mod d)},

which by (H2) is bounded above by

π(x)
∑
d≤xc

1

φ(d)
. (11)

It is known that
∑

d≤X 1/φ(d) � logX; in fact, the following more precise estimate holds
(see [SR85]):∑

d≤x

1

φ(d)
=

315ζ(3)

2π4

(
log x+ γ −

∑
p

log p

p2 − p+ 1

)
+O

(
(log x)2/3

x

)
,

where γ is the Euler-Mascheroni constant. Therefore, the sum in (11) is � x, as desired.

We now turn to estimating the contribution of the coefficients ap for which the correspond-
ing difference J − j is not bounded above by an absolute constant. To be more specific, we
will assume that J − j ≥ (2k + 1)/c.

If pj+1 ≥ xc/2, then the fact that the prime factors are non-decreasing implies

|np| = (p1 . . . pj)(pj+1 . . . pJ)

≥ pj+1 . . . pJ

≥ x(J−j)c/2 ≥ x(2k+1)/2,

which contradicts (H1): |np| ≤ pk ≤ xk. Thus

pj+1 < xc/2

and
p1 . . . pj > xc/2, (12)

for otherwise p1 . . . pj+1 < xc, so j would no longer be the largest index in (10).
Define r to be the positive integer such that

x1/(r+1) ≤ pj < x1/r. (13)

Equation (13) shows that the quantity p1 . . . pj is x1/r-smooth, i.e., all its prime factors are
at most x1/r. This is where the results from Section 2 will come into play. As seen there, it
will be convenient to treat two cases, depending on the range for r.
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Case 1: x1/r > (log x)2.
The prime factors pj+1, . . . pJ are all at least x1/(r+1), so their product is at least x(J−j)/(r+1).

At the same time, this product does not exceed |np| ≤ xk (again, by (H1)). Therefore
J − j ≤ (r + 1)k, which gives

τ(pj+1 . . . pJ) ≤ 2J−j ≤ 2(r+1)k � 2rk

and as a result

τ(np)� τ(p1, . . . pj)2
rk

= 2rk
∑

d|p1,...pj

1.

Using the square root trick, we can restrict this sum to divisors d that are at least (p1 . . . pj)
1/2,

which by (12) is at least xc/4. Hence

τ(np)� 2rk
∑

d∈S(xc,x1/r), d≥xc/4
np≡0 (mod d)

1. (14)

We obtain that the contribution towards (8) from these primes is

�
∑
r

2rk
∑

d∈S(xc,x1/r), d≥xc/4
#{p ≤ x | np 6= 0 and np ≡ 0 (mod d)}.

Assumption (H2) together with Lemma 2.2 shows that the previous sum is

� π(x)
∑
r

2rk
∑

d∈S(xc,x1/r), d≥xc/4

1

φ(d)

� x
∑
r

2rk exp

(
−cr log r

16

)
.

Since
∑

r 2rk exp(−cr log r/16) converges, we get that the expression above is � x.

Case 2: x1/r ≤ (log x)2.
We start with the inequality

τ(n)� exp

(
log n

log log n

)
valid for all n ≥ 3. This follows, for example, from the explicit estimation ([NR83])

max
n≥2

log τ(n) log log n

log 2 log n
≈ 1.5379.

Now instead of (14), we obtain

τ(np)� exp

(
log x

log log x

) ∑
d∈S(xc,x1/r), d≥xc/4

np≡0 (mod d)

1.
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Using Lemma 2.2 again, we see that the contribution towards (8) is

� π(x) exp

(
log x

log log x

)
x−δ log log(x)

∑
r

1,

for some δ > 0. The fact that this expression is � x follows immediately from (13), which
ensures that r ≤ log(x)/ log(2), and thus

∑
r 1� log(x).

The proof of Theorem 1.1 is now complete.

4. Proof of the Corollary

We shall check that the two necessary assumptions of Theorem 1.1 are verified. Since it
is clear that (H1) is implied by the Ramanujan bound: |ap| ≤ 2p(k−1)/2, we only need to
establish (H2). As we explain below, this is a consequence of an effective version of the
Chebotarev density theorem.

Fix an integer m ≥ 1. Let

f(z) =
∑
n≥1

anq
n (q = e2πiz)

be a non-CM newform of weight k ≥ 2, level N and character χ, with integer Fourier
coefficients. Associated to f and m is a Galois representation

ρm : Gal(Q/Q)→ GL2(Z/mZ)

with the property that if p is a prime not dividing mN then

tr ρm(Frobp) ≡ ap (mod m)

and

det ρm(Frobp) ≡ χ(p)pk−1 (mod m),

where Frobp denotes a Frobenius element at p.

Let Km the subfield of Q fixed by the kernel of ρm. Define

Cm := {g ∈ Im(ρm) : tr(g) ≡ 0 (mod m),

and put

δ(m) =
|Cm|

|Gal(Km/Q)|
.

Note that Cm is nonempty because it contains the image of complex conjugation. Moreover,
by the Chebotarev density theorem

#{p ≤ x : ap ≡ 0 (mod m)} ∼ δ(m)π(x).

We are interested in the subset where ap 6= 0, namely

π(x,m) := #{p ≤ x : ap 6= 0 and ap ≡ 0 (mod m)}.
Assuming GRH, an effective version of the Chebotarev Theorem (see [MM84, Lemma 5.3])
gives that for x ≥ 2 we have

π(x,m) = δ(m)π(x) +O(m3x1/2 log(mNx)) +O(x3/4).
7



As explained in [GM14, Page 235], for an upper bound on δ(m) one can use the quantity∏
`n‖m

`

`n−1(`2 − 1)
≤ 1

m

∏
`|m

`

`− 1
=

1

ϕ(m)
.

Therefore, under GRH, we obtain that the inequality

π(x,m)� π(x)

ϕ(m)

holds uniformly for all m ≤ x1/9, so c = 1/9 satisfies (H2).

The conclusion of the corollary is now clear from Theorem 1.1.
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