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Abstract. In this computational paper we verify a truncated version of the Buzzard-
Calegari conjecture on the Newton polygon of the Hecke operator T2 for all large enough
weights. We first develop a formula for computing p-adic valuations of exponential sums,
which we then implement to compute 2-adic valuations of traces of Hecke operators acting
on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard-Calegari
polynomial has a vertex at n ≤ 15, then it agrees with the Newton polygon of T2 up to n.

1. Introduction

Let 2k ≥ 12 be an even number and let S2k be the finite-dimensional C-vector space of
cusp forms of weight 2k on SL2(Z). For a prime number p and f ∈ S2k, the action of the
Hecke operator Tp on f is given by

(Tpf)(z) =
1

p

p−1∑
r=0

f

(
z + r

p

)
+ p2k−1f(pz).

Motivated by a question of Serre, Hatada [10] obtained several congruences modulo powers
of 2 satisfied by the eigenvalues a2 of T2, later improved by Emerton [8]. More precisely,
among the normalized eigenforms in S2k the lowest 2-adic valuation of a2 is 3 (with multi-
plicity 1) if k ≡ 0 (mod 2), 4 (with multiplicity 1) if k ≡ 1 (mod 4), 5 (with multiplicity 1)
if k ≡ 3 (mod 8), and 6 (with multiplicity 2) if k ≡ 7 (mod 8).

Hatada’s congruences represent some of the first results concerning the 2-adic valuations
of the eigenvalues of T2, refered to as T2-slopes. The list of slopes is determined by the 2-adic
Newton polygon of the characteristic polynomial

PT2(X) := det(1− T2X | S2k) ∈ Z[X],

which is defined as the convex hull of the set of points (i, v2(bi)), where v2 denotes the 2-adic
valuation, and bi is the coefficient of X i in PT2(X).

In [6] Buzzard and Calegari conjectured:

Conjecture 1 (Buzzard-Calegari). If m = dimS2k then the polynomial

PBC(X) := 1 +
m∑
n=1

Xn

n∏
j=1

22j(2k − 8j)!(2k − 8j − 3)!(2k − 12j − 2)

(2k − 12j)!(2k − 6j − 1)!

has the same 2-adic Newton polygon as the characteristic polynomial PT2(X).
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This conjecture naturally belongs to the line of questions raised by Buzzard [5], in an
effort to better understand the geometry of Coleman-Mazur eigencurves. Indeed, one can
reformulate Conjecture 1 as a statement about the Newton polygon of the characteristic
polynomial of U2 acting on the space of 2−1/2-overconvergent 2-adic cusp forms of tame level
one and nonpositive integer weight. More general conjectures have been formulated for other
primes in [13] and [2] in connection with Coleman’s spectral halo conjecture.

From a different perspective, the polynomial PT2(X) is particularly relevant in the context
of Maeda’s conjecture [11]. For example, it has been checked numerically in [9] that PT2(X)
is irreducible over Q and its Galois group is the full symmetric group of degree dimS2k for
all 2k ≤ 14000. Furthermore, the irreducibility of PT2(X) in all weights would imply the
same property for the characteristic polynomial of Tp for a density one set of primes p (see
[1]).

The main result of this paper is a computational verification of a truncated version of the
Buzzard-Calegari conjecture. In what follows, we denote by N(P ) the Newton polygon of
a polynomial P (X). If N is a Newton polygon by the truncation N≤m at m we mean the
portion of N in the region 0 ≤ n ≤ m. We remark that N(P deg≤m) ≥ N(P )≤m, but the two
polygons need not be the same. In Theorem 13 we prove the following:

Theorem 2. For k � 0 the 2-adic Newton polygon NBC of the Buzzard-Calegari polynomial
PBC has some vertex n in the interval [7, 15]. For any such vertex:

N≤nBC = N(P deg≤n
T2

).

Moreover, N(P deg≤15
T2

) ≥ NBC.

Theorem 2 relies on a general method for computing p-adic valuations of exponential
sums (see §2, particularly Theorem 8). Using the Eichler-Selberg trace formula we write
the coefficients of PT2 as exponential sums whose 2-adic valuations we can express in closed

form, which we made explicit for P deg≤15
T2

in Sage [15]. Finally, using these explicit formulas
we verify computationally Theorem 2.

It is important to emphasize that Theorem 2 no longer holds if we replace the claim
N≤nBC = N(P deg≤n

T2
) for a vertex n of NBC, with N≤15

BC = N(P deg≤15
T2

). For instance, if k ≡
131126 (mod 217) then N(P deg≤15

T2
) has a vertex at 14, whereas N≤15

BC does not.
Nevertheless, we show an effective relationship between the Newton polygons of PT2 and

its truncation: for each n ≥ 1 there exists an mn,k given by an explicit formula in terms
of n and k with the property that n is a vertex of N(PT2) if and only if it is a vertex of

N(P
deg≤mn,k
T2

) (see Lemma 15). In principle, with sufficient computing power one would be
able to verify that up to a vertex n ≤ 15, the Newton polygons of the Buzzard-Calegari
conjecture coincide, i.e., that N≤nBC = N(PT2)

≤n. Our computations suffice to show that

N≤4
BC = N(PT2)

≤4 for all sufficiently large k and, e.g., that N≤13
BC = N(PT2)

≤13 for k ≡ 34
(mod 211).

Finally, we record one consequence of Theorem 2 to Hatada’s congruences:

Corollary 3. Among the normalized eigenforms in S2k, for k � 0, the lowest two 2-adic
valuations of a2 are:
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3, 7 if k ≡ 0 (mod 4) 4, 9 if k ≡ 5 (mod 16) 5, 8 if k ≡ 3 (mod 16)
3, 8 if k ≡ 6 (mod 8) 4, 10 if k ≡ 29 (mod 32) 5, 9 if k ≡ 27 (mod 32)
3, 9 if k ≡ 2 (mod 8) 4, 11 if k ≡ 45 (mod 64) 5, 10 if k ≡ 11 (mod 32)
4, 8 if k ≡ 1 (mod 8) 4, 12 if k ≡ 13 (mod 64) 6, 6 if k ≡ 7 (mod 8).

Moreover, a consequence of N≤4
BC = N(PT2)

≤4 is that one can list exhaustively the lowest four
2-adic valuations of a2.

The article is organized as follows: in §2 we give a closed form expression for p-adic
valuations of finite exponential sums; in §3 we apply our previous findings to Hecke traces
(Corollary 10); in §4 we discuss certain computational improvements obtained from sums
involving Hurwitz class numbers; finally, in §5, we explain our computational verification of
Theorem 2. The explicit terms that appear in the 2-adic valuations of the traces of T2 are
tabulated in the Appendix.

Acknowledgements. We are grateful to Damien Roy for many useful suggestions, and
especially for showing us the proof of Proposition 7, to the anonymous referee for encouraging
us to work out the relationship between the Newton polygons of PT2 and its truncation, and
to John Bergdall for helpful conversations.

2. Valuations of exponential sequences

In this section we describe a general method for computing valuations of finite exponential
sums. When applying the recipe below to the exponential sums coming from the trace
formula we encounter a technical complication reminiscent of Schanuel’s conjecture, but
which can be circumvented computationally, if not theoretically.

Let K/Qp be a finite extension with ring of integers O, uniformizer $ and residue field F.
We denote vK the valuation on K with vK($) = 1 and ω any section of O → F, e.g., the
Teichmuller lift. In this section we compute the valuations of certain functions on O.

We begin with a lemma describing an explicit algorithm for computing valuations of
polynomials.

Lemma 4. Let P (x) ∈ K[x] be a monic irreducible polynomial of degree d ≥ 2 and slope
λ ∈ 1

d
Z. Suppose that k ∈ O.

(1) If λ < 0 then vK(P (k)) = vK(P (0)).
(2) If λ ≥ 0 then there exists a (possibly empty) sequence u0, u1, . . . , un ∈ F and δ ∈ Z

such that

vK(P (k)) = min(d(λ+ n+ 1) + δ, dvK(k −
n∑
i=0

$λ+iω(ui))).

Proof. The first part is straightforward. In the second part, if λ is not integral we may choose
δ = 0 and the empty sequence. If λ ∈ Z≥0 we remark that the polynomial $−dλP ($λx) is
irreducible with slope 0 and therefore it suffices to treat the case λ = 0.

We construct a sequence of integral polynomials (Pn(X))n≥0 and a sequence (un)n≥0 as
follows. Let P0(x) = P (x). Suppose we have already constructed monic irreducible polyno-
mials P0(x), . . . , Pn(x) with slopes `0, . . . , `n ∈ Z≥0. If `n < 0 or `n /∈ Z or Pn mod $ has no
root in F the sequence terminates at Pn(x). Otherwise, `n ∈ Z≥0 and Pn(x) mod $ has a
single root in F, which we denote un. Define Pn+1(x) = $−dPn($x+ω(un)). The polynomial
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Pn+1(x) is also monic irreducible and therefore isoclinic with slope `n+1, and we proceed as
above.

First, we show that the process always terminates. Otherwise, `n ∈ Z≥0 and Pn+1(x) =
$−dPn($x+ ω(un)) for all n. In this case,

$ndPn(0) = P

(
n−1∑
i=0

$iω(ui)

)

for all n. We conclude that
∞∑
i=0

$iω(ui) ∈ K is a root of P (x), contradicting its irreducibility.

Suppose now that the sequence of polynomials is P0, . . . , Pn+1 with associated sequence
u0, . . . , un ∈ F, in which case either Pn+1(x) has slope δ

d
not in Z≥0 or Pn+1 has no root in F,

in which case we set δ = 0. We will prove the desired formula by induction on n. The base
case is n = −1. Since P (x) has nonnegative integral slope we deduce that P (x) has no root in
F, λ = 0 and δ = 0 by definition and therefore vK(P (k)) = 0 = min(d(λ+n+1)+δ, dvK(k)).

For the induction step, note that for the polynomial P1(x) the sequence is P1, . . . , Pn+1.
First, if k 6≡ u0 (mod $) then vK(P (k)) = 0. Otherwise, if k ≡ u0 (mod $) the inductive
hypothesis implies that

vK(P (k)) = d+ vK(P1((k − ω(u0))/$))

= d+ min(d(λ+ n) + δ, dvK((k − ω(u0))/$ −
n−1∑
i=0

$iω(ui+1))

= min(d(λ+ n+ 1) + δ, dvK(k −
n∑
i=0

$iω(ui)).

�

We turn to the main results of this section. Our aim is to compute, for each positive
integer k, the valuation of a finite exponential sum of the form:

f(k) =
m∑
n=1

anb
k
n,

where a1, . . . , am ∈ K and b1, . . . , bm ∈ O are nonzero.

Proposition 5. Suppose a1, . . . , am ∈ K× and b1, . . . , bm ∈ O×. There exists an integer D
and for each class r (mod D) there exist λr ∈ Z and possibly empty collections of Ωr,i, ur,j ∈
O, nr,j ∈ Z≥0, and dr,j ∈ Z≥2 such that

vK(f(k)) = λr +
∑
i

vK(k − Ωr,i) +
∑
j

min(nr,j, dr,jvK(k − ur,j)),

for each k ≡ r (mod D).
Moreover, all the constants above are effective and can be computed up to arbitrary preci-

sion in polynomial time.

Proof. As usual we denote q = |O/$O| and e = eK/Qp for the ramification index.
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Let D be the smallest positive integer such that bDn ≡ 1 (mod $`) for each n, where
` = e + 1, in which case D | q`−1(q − 1). We denote cn ∈ O such that bDn = 1 + $`cn. If
k = Dx+ r for some integer x then

f(k) =
m∑
n=1

anb
r
n(bDn )x =

m∑
n=1

anb
r
n(1 +$`cn)x.

Recall that logp(1+x) converges absolutely when vp(x) > 0 and exp(x) converges absolutely

when vp(x) > 1
p−1

. In the latter case, logp and exp are mutual inverses. Since vp($
`) > 1 it

follows that vp(logp(1 +$`cn)) > 1 ≥ 1
p−1

and therefore

(1 +$`cn)x = exp(x logp(1 +$`cn)),

is a p-adic analytic function in x. As a result, we see that the p-adic analytic function

fr(x) =
m∑
n=1

anb
r
n exp(x logp(1 +$`cn))

satisfies f(Dx+ r) = fr(x) for each integer x.
Examining the Taylor expansion of fr(x) we see that

fr(x) =
∞∑
N=0

xN

N !

m∑
n=1

anb
r
n

(
logp(1 +$`cn)

)N ∈ K ⊗O[[x]],

since vp(
(
logp(1 +$`cn)

)N
/N !) = N(vp(logp(1 + $`cn)) − 1) → ∞ and so fr(x) converges

on all of O, since its coefficients go to 0. Let d be the x-coordinate of the lowest vertex of
the Newton Polygon of fr(x), and αr be the coefficient of xd. There exists Newton slope
factorization for fr(x), i.e., a monic polynomial Pr(x) ∈ O[x] of degree d and a power series
ur(x) ∈ 1 +$O[[x]] such that fr(x) = αrPr(x)ur(x), the Newton Polygon of fr(x) being the
concatenation of the Newton Polygons of αrPr(x) and αrur(x).

For all x ∈ O we see that vK(ur(x)) = 0 as ur(x) converges on O. This implies that

vK(fr(x)) = vK(αr) + vK(Pr(x)).

Factoring Pr(x) =
∏

i(x− ωi)
∏
Rj(x) where each Rj(x) is irreducible of degree dj ≥ 2 and

applying Lemma 4 immediately implies the desired formula for vK(f(k)) for each k ≡ r
(mod D).

Suppose we want to compute the constants up to precision M . First note that there
is an explicit integer D, computable in polynomial time, such that up to precision M the
power series fr(x) agrees with the truncation of fr(x) in degree D. Indeed, it suffices that
D(vp(log(1 +$`cn))− 1) > M for each n. Then computing fr(x) requires O(M2(M +D)m)
operations, the factor M2 being the trivial upper bound for the running time of multiplication
of long numbers. Thereafter, the effectiveness of computing the constants in the formula is
equivalent to the effectiveness of Newton slope factorizations and polynomial factorizations
in K[x], both of which are polynomial time algorithms by p-adic approximation and Hensel’s
lemma.

�

Proposition 5 definitively answers the question of what vp(f(k)) is under the assumption
that each exponential base bi is a p-adic unit. Let us examine the general situation. Suppose
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a1, . . . , am ∈ K× and b1, . . . , bm ∈ O − {0}, and let f(k) =
∑
aib

k
i . Collecting exponential

bases by valuation there exist µ1 < . . . < µs ∈ Z≥0 and exponential functions f1, . . . , fs
satisfying the hypotheses of Proposition 5 such that

f(k) =
s∑
i=1

$µikfi(k).

Taking D as the least common multiple of the moduli for f1, . . . , fs we deduce that for each
i and r mod D there exist constants λr,i,Ωr,i,j, ur,i,j, nr,i,j, dr,i,j such that

vK(fi(r +Dk)) = λr,i +
∑
j

vK(k − Ωr,i,j) +
∑
j

min (nr,i,j, dr,i,jvK(k − ur,i,j)) .

In this nonarchimedean setting whether we can compute the valuation of f(k) depends on
whether the valuations of $µikfi(k) are distinct. At first glance it seems that the linear term
µik dominates this valuation, but this need not be the case.

Definition 6. We say that Ω ∈ O is superconvergent if

lim sup
vK(k − Ω)

k
> 0.

For example, the superconvergent elements of Z2 are precisely those with 2-adic expansion
∞∑
n=0

2`(n), where lim sup `(n+ 1)/2−`(n) > 0.

If none of the Ωr,i,j are superconvergent then indeed the linear term µik dominates the
valuation of $µikfi(k). However, this is not always the case. For example, suppose Ω is
superconvergent. Then for some base b ∈ O× with vK(b−1) sufficiently large the exponential
function f(k) = −bΩ · 1k + 1 · bk has root Ω which then necessarily appears in the expression
for vK(f(k)).

We are grateful to Damien Roy for kindly providing us with the proof of the following
proposition, which shows that superconvergent roots only occur in a local setting.

Proposition 7. Suppose F is a number field with ring of integers O, and let a1, . . . , am ∈ F×.
Let b1, . . . , bm ∈ O − 0 such that no ratio bi/bj is a root of unity for i 6= j. Then for each

embedding F ↪→ Qp, sending each bj to a p-adic unit, the exponential function f(k) =
m∑
i=1

aib
k
i

does not have a superconvergent root.

Remark 1. This result can be reformulated to say that if Ω is superconvergent and b1, . . . , bm ∈
Q then the elements bΩ

1 , . . . , b
Ω
m (interpreted as elements in Cp) are linearly independent over

Q. Under this formulation Proposition 7 is reminiscent of, albeit in no way related to,
Schanuel’s conjecture.

Proof. We denote by w the place of F corresponding to the embedding into Qp. As explained
in the proof of Proposition 5 it suffices to assume that each bj satisfies |bj − 1|w < 1, since
a suitable integral power of bj satisfies this condition. Moreover, to simplify inequalities, we
may assume that a1, . . . , am ∈ O.
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The result then follows as an application of Schlickewei’s extension of Schmidt’s subspace
theorem [16]. Let S be a finite set of places that includes the archimedean places of F and
the place w such that each bj is an S-unit in O. Furthermore, we consider the linear form
Lw,1(X1, . . . , Xm) = a1X1 + · · · + amXm and for each place v ∈ S and index 1 ≤ i ≤ m we
denote Lv,i(X1, . . . , Xm) = Xi, if (v, i) 6= (w, 1). Schlickewei’s result implies that for each
δ > 0 the non-zero solutions (x1, . . . , xm) ∈ Om of the inequality

(1)
∏
v∈S

m∏
i=1

|Lv,i(x1, . . . , xm)|v ≤

(
max

1≤i≤m
σ:F ↪→C

|σ(xi)|

)−δ
are contained in a union of finitely many proper subspaces of Fm, where | · |v is the usual
norm on Fv, normalized to give the value q−1

v on uniformizers, where qv is the cardinality of
the residue field.

Let us reinterpret (1) in the case when (x1, . . . , xm) = (bk1, . . . , b
k
m) for a positive integer k.

The assumption that each bj is an S-unit implies that
∏
v∈S
|bj|v = 1, as the adelic norm is 1 on

F× and |b1|w = 1 by hypothesis. Therefore the left hand side of (1) is |a1b
k
1 + · · ·+ amb

k
m|w.

Since not all bi are roots of unity (this follows from hypothesis if m ≥ 2, and the statement
is trivially true when m = 1) it follows that C = max

1≤i≤m
σ:F ↪→C

|σ(bi)| > 1. Thus inequality (1)

becomes

|a1b
k
1 + · · ·+ amb

k
m|w < C−kδ.

Suppose now that f(k) has a superconvergent root Ω. By definition there exists ε > 0
and a sequence of positive integers (nk) such that vp(Ω − nk) > εnk for k � 0. Note that

for each j and k, vp(b
Ω−nk
j − 1) = vp(bj − 1) + vp(Ω− nk) > εnk and so

|
m∑
j=1

ajb
nk
j |w = |

m∑
j=1

ajb
nk
j (1− bΩ−nk

j )|w < q−εnkw .

Choosing δ > 0 such that C−δ = q−εw implies that the tuples (bnk1 , . . . , bnkm ) lies in finitely
many proper subspaces of Fm, for k � 0.

Suppose c1x1 + · · · cmxm = 0 is one of these proper subspaces. The Skolem-Mahler-Lech
Theorem [3, Theorem 2.1] implies that if (bnk1 , . . . , bnkm ) lies on this subspace then nk belongs
to a finite set or a finite union of arithmetic progressions. The assumption that bi/bj is not a
root of unity implies that

∑
cjb

r
j = 0 cannot be satisfied for r in arithmetic progressions and

therefore the equation holds only for finitely many nk, yielding the desired contradiction. �

We now turn to the general setting of exponential sums. Suppose F is a number field with
ring of integers O and K/Qp is a finite extension containing F .

Theorem 8. Suppose a1, . . . , am ∈ F× and b1, . . . , bm ∈ O−{0}, such that bi/bj is not a root
of unity for i 6= j. Let µ = min vK(bi). There there exists an integer D and for each class r
(mod D) there exist λr ∈ Z, and possibly empty collections of Ωr,i, ur,j ∈ O, nr,j ∈ Z≥0, and
dr,j ∈ Z≥2 such that

vK(f(r +Dk)) = µk + λr +
∑
i

vK(k − Ωr,i) +
∑
j

min(nr,j, dr,jvK(k − ur,j)).
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for each k large enough. Moreover, all the constants above are effectively computable to
arbitrary precision in polynomial time.

Proof. As mentioned above, if we order µ1 < . . . < µs the distinct valuations of the expo-
nential bases then vK(f(k)) = vK(

∑
$µikfi(k)) where for k ≡ r (mod D):

vi(k) = vK($µikfi(k)) = µr,ik + λr,i +
∑
j

vK(k − Ωr,i,j) +
∑
j

min(nr,i,j, dr,i,jvK(k − ur,i,j)).

We choose µ = µ1, λr = λr,1, Ωr,j = Ωr,1,j, etc.
Using Proposition 7 it follows that vi(k)−µik = O(

∑
j vK(k−Ωr,i,j)) = o(k) and therefore

for k large enough v1(k) < vi(k) for all i > 1. We conclude that vK(f(k)) = v1(k) as desired.
�

Remark 2. Theorem 8 yields a computable expression for the valuations of exponential sums.
However, we cannot make effective the condition that k be large enough.

3. Traces of Hecke operators

As discussed in the introduction, Maeda’s conjecture is intimately related to the charac-
teristic polynomials PTp(X) = det(1 − TpX|S2k). In this section we turn our attention to
algorithmically computing the Newton polygon of PTp(X), which we implement in the last
section for T2.

First, we note that if S2k has dimension m then

PTp(X) =
m∑
n=0

(−1)nXn Tr(∧nTp|S2k).

To compute the trace of ∧nTp we follow the usual method of expressing elementary sym-
metric polynomials in terms of power sums by means of exponential Bell polynomials. The
exponential Bell polynomial Bn(x1, . . . , xn) ∈ Z[x1, . . . , xn] has degree n and p(n) monomial
terms, where p(n) is the partition function, and we compute:

Tr(∧nTp|S2k) =
(−1)n

n!
Bn(−0! · Tr(Tp|S2k),−1! Tr(T 2

p |S2k), . . . ,−(n− 1)! Tr(T np |S2k)).

Using the definition of Tpn and the Newton identities, we see that:

Tr(T np |S2k) =

bn/2c∑
i=0

((
n

i

)
−
(

n

i− 1

))
p(k−1)i Tr(Tpn−2i |S2k) = Tr(Tpn|S2k) +O(pk−1),

which implies that Tr(∧nTp|S2k) = (−1)n

n!
Bn(. . . ,−(i− 1)! · Tr(Tpi|S2k), . . .) + O(pk−1). Here

A(k) = O(B(k)) for two p-adic functions A and B means that |A(k)|p � |B(k)|p for k � 0.

Finally, we may compute the traces of Tpn using the Eichler-Selberg trace formula, which
expresses the trace of the Hecke operator in terms of Hurwitz class numbers. Since it will be
necessary later, we recall here the definition of the Hurwitz class number H(m) (as in [12, p.
306]). For a positive integer m ≡ 0, 3 (mod 4) we denote Em = Q(

√
−m) with discriminant

−dm in which case we may write m = a2dm for a positive integer a. We define

(
Em

`

)
to be
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(
−dm
`

)
if ` is odd, and if ` = 2 then either 0 if dm is even or (−1)(d+1)/4 otherwise. For an

integer a we denote

ϕm(a) = a
∏
`|a

(
1−

(
Em

`

)
1

`

)
,

in which case the Hurwitz class number is

H(m) =
hm
w

∑
a2|m/dm

ϕm(a)

where hm is the class number of Em, and

w =


2 if m = 4,

3 if m = 3,

1 otherwise.

In the case of the Hecke operator Tpn the Eichler-Selberg trace formula [12, p. 370] implies:

Tr(Tpn|S2k) = −1

2

n∑
i=0

p(2k−1) min(i,n−i)−H(4pn)(−pn)k−1

2
−

∑
1≤t<2pn/2

H(4pn−t2)
ρ2k−1
t − ρ2k−1

t

ρt − ρt
.

Here ρt, ρt are the roots
t±
√
t2 − 4pn

2
of X2−tX+pn = 0, chosen such that vp(ρt) ≤ vp(ρt).

An immediate consequence is that Tr(∧nTp|S2k) is an exponential sum of the type consid-
ered in the previous section and, by Theorem 8, to compute vp(Tr(∧nTp|S2k)) it suffices to
consider only the exponentials with p-adic unit bases.

Lemma 9. Let n be a positive integer and p a prime number. Then

Tr(Tpn|S2k) = −1−
∑

1≤t<2pn/2,p-t

H(4pn − t2)√
t2 − 4pn

ρ2k−1
t +O(pk)

Tr(T2|S2k) = −1− 1√
−7

ρ2k−1
1 +O(2k).

Proof. Note that for every prime p:

1

2

n∑
i=0

p(k−1) min(i,n−i) = 1 +O(pk).

For the first identity it suffices to check that only the above mentioned roots of X2− tX+
pn = 0 remain. If p is odd, the bound t < 2pn/2 implies that vp(t) < n/2 and so the Newton
Polygon of this equation consists of two segments with negative slope, one of which equals
−vp(t). We conclude that both roots are in Zp with valuations vp(t) and n− vp(t). In fact,
ρt has valuation vp(t) and ρt has valuation n − vp(t). Since these roots are raised to the
exponent 2k − 1 we may remove all except ρt with p - t.

When p = 2 the equation is X2 − 2`uX + 2n = 0, where t = 2`u for an odd number u. A
priori we know that 2` < n + 2. If 2` < n then the Newton Polygon consists again of two
segments, with slopes ` and n− `. Otherwise it consists of a single segment with slope n/2.

9



If n > 1 then n− ` > 0 and so we may eliminate the roots ρt and keep ρt for odd t. When
n = 1 the above expression is immediate by inspection.

�

Turning back to f(k) = Tr(∧nTp|S2k) we see that the exponential sum

f(k) =
(−1)nBn(0!, 1!, . . . , (n− 1)!)

n!
+
∑

aib
k
i

has the following properties:

(1) Bn(0!, 1!, . . . , (n− 1)!) 6= 0 (the coefficients are all nonnegative) and
(2) The remaining bases bi are not roots of unity. Indeed, each base bi is of the form

bi =
∏
ρ
ej
j,tj

where ρj,tj is a root of X2 − tjX + pj = 0. However, each root ρj,tj has

norm pj which means that bi has non-unit norm.

We now apply the results of the previous section to Hecke traces. In this case we may
choose D = 2 and r = 0, since level one modular forms have even weights.

Corollary 10. For each n ≥ 1 there exists an integer λn ∈ Z and possibly empty collections
Ωi ∈ Z2 and integers nj ≥ 0, dj ≥ 2, uj ≥ 0 such that

(2) v2(Tr(∧nT2|S2k)) = λn +
∑
i

v2(k − Ωi) +
∑
j

min(nj, djv2(k − uj)),

for all large enough k.

Proof. This follows from Theorem 8 since the exponential series for Tr(∧nT2|S2k) is not the
0 power series, as explained above.

�

4. Computations of valuations of Hecke traces

From an algorithmic perspective Corollary 10 has a major flaw: while the constants in
Theorem 8 are computable in polynomial time, the running time is a polynomial in the
number of exponentials, which in the case of traces of Hecke operators is on the order of
O(2n/2). Note that even if the number of terms in the Eichler-Selberg trace formula were
smaller, the exponential Bell polynomials have exponentially many monomials, which means
any implementation of Theorem 8 for Tr(∧nT2|S2k) would have to be exponential in n.

In this section we explain our implementation of Corollary 10 with an eye towards speeding
up this exponential time algorithm. We begin with an observation. Suppose E1(k), . . . , En(k)
are exponential sums over Z2 and B(X1, . . . , Xn) ∈ 1

T
Z[X1, . . . , Xn] for some T ∈ Z2. If

fr,1(k), . . . , fr,n(k) are the power series associated with the exponential sums E1, . . . , En for
k ≡ r (mod D) then B(fr,1(k), . . . , fr,n(k)) is the power series associated with B(E1, . . . , En).
This computation is polynomial in the precision of Z2, of Z2[[k]], and of the number of
monomials in B. Moreover, if gr,i ≡ fr,i (mod 2M) then

B(gr,1, . . . , gr,n) ≡ B(fr,1, . . . , fr,n) (mod 2M−v2(T ))

which means that instead of approximating the exponential sum B(E1, . . . , En) with power
series to precision N it suffices to approximate each Ei to precision M + v2(T ).
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Let us turn to making more efficient the computations of power series attached to the
exponential sums in Tr(T2n|S2k), which can then be used to compute the power series at-
tached to Tr(∧nT2|S2k) as in the previous paragraph. A priori the computation involves 2n/2

exponentials:

Tr(T2n|S2k) = −1−
∑

1≤t<2n/2+1,2-t

H(2n+2 − t2)√
2n+2 − t2

ρ2k−1
t +O(pk).

We are able to make this computation more efficient by controlling the precision of compu-
tations. Suppose we seek the power series f(k) attached to the exponential sum above up
to precision M . We compute

Tr(T2n|S2k) = −1−
∑

0≤u<2n/2

∞∑
m=0

km

m!

H(2n+2 − (1 + 2u)2)

ρ1+2u

√
2n+2 − (1 + 2u)2

(
log2(ρ2

1+2u)
)m

= −1−
∑

0≤u<2n/2

∞∑
m=0

km

m!
H(2n+2 − (1 + 2u)2)

∞∑
r=0

an,m,ru
r

where the coefficients an,m,r can be computed from the Taylor expansion around 0. They
satisfy v2(an,m,r) ≥ 2m for all r and, for any α < 1, v2(an,m,r) ≥ 2m + αr for r ≥
rα = d 4

1−αe + 2α
1−αd

2
1−αe. Indeed, this can be seen as follows. As a power series in u we

have log2(ρ2
1+2u) ∈ 22Z2[[u]]. Factoring 22 we obtain the term 2m in the lower bound on

valuation. Let us turn to the growth of valuations of the Taylor coefficients of q(u) =

(2−2 log2(ρ2
1+2u))

m/(ρ1+2u

√
2n+2 − (1 + 2u)2), or equivalently to the sizes of slopes of the

Newton polygon of q(u). Any root of q(u) would satisfy ρ1+2u = ζ, where ζ is a root of unity
of order 2b for some b. But then 1 + 2u = ζ + 2n+2ζ−1 and so u = (ζ − 1)/2 + 2n+1ζ−1 which
has valuation 1/2b−1 − 1. We conclude that the number of slopes of the Newton polygon
of q(u) which are ≤ λ for some λ < 1 is at most d 2

1−λe, since they correspond to roots of

unity with 1 − 1/2b−1 ≤ λ. The inequality v2(an,m,r) ≥ 2m + αr for r ≥ rα then follows by
computing a lower bound on the Newton function of q(u) partitioning the Newton slopes up
to rα in the intervals [0, α], [α, (1 + α)/2] and [(1 + α)/2,∞).

Fix α < 1. The fact that v2(an,m,r/m!) ≥ m for all r and ≥ m + αr for r ≥ rα implies
that up to precision M :

Tr(T2n|S2k) ≡ −1−
∑

rα≤r<(M−m)/α
or r<rα,m<M

an,m,rk
m

m!

∑
0≤u<2n/2

H(2n+2 − (1 + 2u)2)ur (mod 2M).

It is therefore necessary and sufficient to compute the sums

H odd
r (2n) =

∑
1≤t<2n/2+1,2-t

H(2n+2 − t2)tr

for r ≤ M/α. Such sums have long been studied in connection with Fourier coefficients of
modular forms [14, 4].

In the remainder of this section we will explain how to make the computation of H odd
r (2n)

faster. We begin with a result that states that it suffices to compute

Hr(2
n) =

∑
1≤t<2n/2+1

H(2n+2 − t2)tr.

11



Lemma 11. We have

H odd
r (22m) = Hr(2

2m)− 2r+1Hr(2
2(m−1))− 2rm+1/3

H odd
r (22m−1) = Hr(2

2m−1)− 2r+1Hr(2
2(m−1)−1)− 2rm−1.

Proof. Collecting terms by 2-adic valuation we see that

Hr(2
n) =

∑
0≤2e<n+2

2er
∑

1≤t<2n/2+1−e,2-t

H(2n+2 − 22et2)tr.

If n+ 2− 2e < 3 then either n = 2e− 1 in which case the inner sum is H(22e) = 2e−1 − 1/2
or n = 2e in which case the inner sum is H(3 · 22e) = 2e − 2/3.

Let us turn to the general case n + 2− 2e ≥ 3. For any m the function ϕm that appears
in the definition of Hurwitz class numbers is multiplicative, and therefore so is the divisor

sum
∑

a2|m/dm

ϕm(a). For odd t we have 2n+2−2e − t2 ≡ 7 (mod 8) and therefore w = 1, and

we compute

H(22e(2n+2−2e − t2)) = H(2n+2−2e − t2)
e∑

k=0

ϕ2n+2−2e−t2(2
k) = 2eH(2n+2−2e − t2).

We deduce that

Hr(2
2m) =

m−1∑
e=0

2(r+1)eH odd
r (22(m−e)) + 2(r+1)m − 2rm+1/3

Hr(2
2m−1) =

m−1∑
e=0

2(r+1)eH odd
r (22(m−e)−1) + 2(r+1)m−1 − 2rm−1.

Solving for the odd Hurwitz sums we conclude the desired formulas.
�

We now turn to computing the sums Hr(2
n). The following procedure is based on [14,

§4]. We will denote f(n) ≈ g(n) if f(n)− g(n) can be computed in time which is polynomial
in n. Then the Eichler-Selberg trace formula implies that

Tr(T2n|S2k) ≈
k−1∑
i=0

(−1)i
(

2k − 2− i
i

)
2niH2k−2−2i(2

n).

In §3 we explained how to do compute the LHS by computing Tr(T n2 |S2k), and this can be
evaluated explicitly as the sum of the n-th powers of the normalized a2 coefficients on a basis
of S2k, which can be done in polynomial time. Solving the system of equations we conclude
that Hr(2

n) can be computed in polynomial time for every even r.
The computation of Hr(2

n) for odd r would similarly be related to Tr(T2n|Sk(N, ε)) for
odd weights k and (necessarily) odd characters ε : (Z/NZ)× → C×. For simplicity suppose

N = ` ≡ 7 (mod 8) is a prime number and ε =

(
·
`

)
, an odd character with ε(2) = 1. The
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Eichler-Selberg trace formula [12, p. 370] in this case implies that

−Tr(T2n|Sk(`, ε)) ≈
∑

i<k/2−1

(−1)i
(

2k − 2− i
i

)
2ni

 ∑
`|2n+2−t2

(
t

`

)
H(2n+2 − t2)tk−2−2i+

+`
∑

`2|2n+2−t2
H

(
2n+2 − t2

`2

)
tk−2−2i + 2

∑(
ρt

`

)
H(2n+2 − t2)tk−2−2i

 ,

where t varies such that 1 ≤ t < 2n/2+1 and the last sum is over t such that

(
t2 − 2n+2

`

)
= 1,

i.e., ρt ∈ F`.
As in the even weight case we may compute Tr(T2n|Sk(`, ε)) for any given odd k in poly-

nomial time. Solving the system of equations above, we may compute a Hurwitz sum∑
H(2n+2 − t2)tr for odd r over t such that

(
t2 − 2n+2

`

)
= 1 and

(
ρt

`

)
= 1 in terms

of the sums over t such that ` | 2n+2 − t2 and such that

(
t2 − 2n+2

`

)
= 1 and

(
ρt

`

)
= −1.

Asymptotically, this eliminates the need to compute a quarter of the terms in Hr(2
n).

5. The Buzzard-Calegari Conjecture

In this section we turn our attention to the Buzzard-Calegari Conjecture and the proof of
Theorem 2.

Let 2k ≥ 12 and m = dimS2k the dimension of the space of cusp forms of weight 2k and
level SL2(Z). It is elementary to show that the Newton polygon of the Buzzard-Calegari
polynomial

PBC(X) = 1 +
m∑
n=1

Xn

n∏
j=1

22j(2k − 8j)!(2k − 8j − 3)!(2k − 12j − 2)

(2k − 12j)!(2k − 6j − 2)!

is the same as the Newton polygon of the points {(n, an)|0 ≤ n ≤ m} where the nonnegative
integers an can be described explicitly as follows. For an integer ` we denote δ` = 1 if ` ≡ 1
(mod 6) and 0 otherwise. Then

(3) an =
3n(n+ 1)

2
+

6n+1∑
`=3n+4

en,`v2(k − `),

where

en,` =


⌊
`−1

3

⌋
− n 3n+ 4 ≤ ` < 4n

δ` + n− 1−
⌊
`
6

⌋
` = 4n, 4n+ 1

δ` + n−
⌊
`
6

⌋
4n+ 2 ≤ ` ≤ 6n

1 ` = 6n+ 1

.

The Buzzard-Calegari conjecture posits that the Newton polygons of points with heights
prescribed by equations (2) (Corollary 10) and (3) are the same. We will experimentally
verify our truncated version of this conjecture by making explicit the list of transcendental
numbers Ωi and integers nj, dj, uj in Corollary 10.
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Theorem 12. For 1 ≤ n ≤ 15 there exist Ωi ∈ Z2 and integers nj, uj such that:

v2(Tr(∧nT2|S2k)) =
3n(n+ 1)

2
+
∑
i

v2(k − Ωi) +
∑
j

min(nj, 2v2(k − uj)),

for all large enough k. The number of expressions of the form v2(k − α), counted with
multiplicity, is the same as in (3).

Proof. We implemented Corollary 10 in Sage [15], the results being tabulated in the Appen-
dix. In the case of n = 1, the one constant Ω ∈ Z2 appearing in the expression above can be
computed using the 2-adic log map:

Ω =
1

2

(
log2(1− 2ρ)

log2(1− ρ)
+ 1

)
,

where ρ = 1−
√
−7

2
and therefore for all k ≥ 2 we have

v2(Tr(T2|S2k)) = 3 + v2(k − Ω).

Indeed, since the exponential sum contains only unit bases we are not constrained to k � 0.
For the convenience of the reader, we explain in more detail the case n = 4. In this case,

the power series f0(k) obtained from Tr(∧4T2|S2k) has content 30 = 3·4·5
2

and factors, up to
an invertible power series and precision 10, as

(k − 789)(k − 23)(k − 337)(k − 25)(k − 18)(k − 22)(k − 980)(k − 720)(k2 − 38k + 361).

The linear factors provide the list of Ωj. Applying Lemma 4 to the unique quadratic poly-
nomial q(k) we obtain λ = 0, δ = 5 and (un) = {1, 1, 0, 0, 1} and therefore v2(q(k)) =
min(15, 2v2(k−19)), thereby obtaining the desired explicit formula for v2(Tr(∧4T2|S2k)). �

Remark 3. It is important, for applications, to know to what precision one can compute
the constants in Theorem 12. Suppose one works in Q2 with M digits of precision and,
in Theorem 8, one approximates power series with polynomials of degree D ≤ M . If

f(x) =
∞∑
u=1

xu/u!
m∑
n=1

an(log2(b2
n))u is approximated with fD(x) =

D∑
u=1

xu/u!
m∑
n=1

an(log2(b2
n))u

then f(x) ≡ fD(x) (mod 2D). Indeed, since v2(log2(b2
n)) ≥ 2 it follows that

v2(1/u!
m∑
n=1

an(log2(b2
n))u) ≥ 2u− v2(u!) ≥ u

for all u.
Removing the content 3n(n+1)

2
of the power series fD(x), we may compute the nonnegative

slope polynomials PD(x) with precision P = D− 3n(n+1)
2

. As long as each nj in Theorem 12
is smaller than this precision we know each Ωi to precision P .

The tables in the Appendix were obtained using N = 10000 and D = 500 which means

that we identified each constant for ∧nT2 up to precision 500 − 3n(n+1)
2

, so overall precision
at least 140.

Remark 4. It is computationally useful in the proof of Theorem 13 that the explicit constants
Ωj (resp. uj) in Theorem 12 appear “2-adically close” to corresponding ` in (3). By this
we mean the following: the total number of constants Ωj (counted with multiplicity 1) and
uj (counted with multiplicity 2) in Theorem 12 equals the total number of ` (counted with
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multiplicity en,`) in (3). Moreover, for each Ωj (resp. uj) there exists an ` such that v2(Ωj−`)
(resp. v2(uj − `)) is large, though we are not able to quantify this valuation in general. The
pairing of Ωj (resp. uj) and the corresponding ` appears in the Appendix.

Our main computational result is a partial verification of the Buzzard-Calegari conjecture
using Theorem 12. Recall that if N is a Newton polygon by the truncation at m we mean
the portion N≤m of N in the region 0 ≤ n ≤ m. Also, N1 ≥ N2 means that the Newton
polygon N1 lies on or above the Newton polygon N2.

Theorem 13. For k � 0 the Newton polygon NBC of the Buzzard-Calegari polynomial PBC

has some vertex n in the interval [7, 15]. For any such vertex:

N≤nBC = N(P deg≤n
T2

).

Moreover, N(P deg≤15
T2

) ≥ NBC.

We shall need the following technical result.

Lemma 14. Suppose k > 6 is an integer and n ≥ 1. The Newton polygon NBC has a vertex

at n if and only if the Newton polygon of PBC(X) truncated in degree n+ 2
3

6n+1∑
`=3n+4

en,`v2(k−`)

does as well, in which case N≤nBC = N(P deg≤n
BC ).

Proof. The “only if” direction is straightforward. To check that NBC has a vertex at n one
needs to check that slopes in the region ≤ n are < the slopes in the region ≥ n, i.e., for all
vertices a < n and vertices b > n:

1

n− a

(
3n(n+ 1)

2
+
∑

en,`v2(k − `)− 3a(a+ 1)

2
−
∑

ea,`v2(k − `)
)

<
1

b− n

(
3b(b+ 1)

2
+
∑

eb,`v2(k − `)− 3n(n+ 1)

2
−
∑

en,`v2(k − `)
)
.

This inequality is automatic for all b > n+ 2
3

6n+1∑
`=3n+4

en,`v2(k− `) and therefore one only needs

to compute explicitly slopes in the Newton polygon truncated at this degree.
�

Proof of Theorem 13. We now describe our computational approach to verifying the
corollary. At each iteration i we are left with verifying the case of k varying in a collec-
tion of 2-adic balls Ci = {B(ai,j, ni,j)} (where B(a,m) = {x ∈ Z2 | v2(x− a) > m}), initially
starting with C0 = {Z2}.

We begin with the following observation:

(1) if v2(k − Ω) 6= v2(k − `) then either k ∈ B(Ω, v2(Ω− `)) or k ∈ B(`, v2(Ω− `));
(2) if n > v2(u−`) and min(n, v2(k−u)) 6= v2(k−`) then again either k ∈ B(u, v2(u−`))

or k ∈ B(`, v2(u− `));
(3) finally, if u = ` then min(n, 2 · v2(k − `)) 6= 2 · v2(k − `) then k ∈ B(`, n/2).

Therefore the two sets of vertices {(n, v2(Tr(∧nT2|S2k))) | n ≤ 15} and {(n, an) | n ≤ 15}
coincide unless for some n and a pair (Ω, `) (resp. triple (m,u, `)) in the Appendix we have
v2(k − Ω) 6= v2(k − `) (resp. min(m, 2 · v2(k − u)) 6= 2 · v2(k − `)). By the discussion above
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we conclude that we next need to treat the case when k varies in one of the 2-adic balls in
the collection:

C1 = {B(Ω, v2(Ω−`))}∪{B(`, v2(Ω−`))}∪{B(u, v2(u−`))}∪{B(`, v2(u−`))}∪{B(`, nj/2)}.

Suppose we are in iteration i and we desire to verify Theorem 13 for all sufficiently large k
in B(a,m) ∈ Ci.

For an integer N we denote:

ST2(B(a,m), N) = {(n, 3n(n+ 1)

2
+
∑

v2(a− Ωi) +
∑

min(nj, 2 · v2(a− uj)) | 0 ≤ n ≤ N}

SBC(B(a,m), N) = {(n, 3n(n+ 1)

2
+
∑

en,` · v2(a− `)uj)) | 0 ≤ n ≤ N}.

Note that if k ∈ B(a,m) then v2(k−Ω) ≥ v2(a−Ω) if v2(a−Ω) ≤ m with equality if the
latter inequality is strict; in this case we say that v2(k−Ω) is precisely computed in the ball
B(a,m). We conclude that the points in ST2 lie below the points {(n, v2(Tr∧nT2|S2k)) | n ≤
N}, and similarly for SBC, and the same can be said of their Newton polygons. We say that
the n-th point in ST2 or SBC is precisely computed in the ball B(a,m) if every valuation in
the formula for n is precisely computed in B(a,m). Note that if every vertex of the Newton
polygon of ST2 is precisely computed then this Newton polygon is the actual Newton polygon
of the points {(n, v2(Tr∧nT2|S2k)) | n ≤ N}, and similarly for SBC.

We begin with determining the largest n ≤ 15 for which n is a vertex of NBC. First, if
n is a vertex of NBC then it must also be a vertex of the Newton polygon NBC,N of the
points {(n, an) | 0 ≤ n ≤ N} for every N . On a first round, to check if n is a vertex of
NBC we first verify if n is a vertex of NBC,2n+1. The reason for this choice is the following:
if an is not precisely computed in the ball B(a,m) then a is close to some ` appearing in
the expression for an. However, the set of `-s appearing in the formula for a2n+1 is disjoint
from the sets of `-s appearing in an and therefore the last vertex in NBC,2n+1 is likely to be
precisely computed. As a proxy for NBC,N we use the Newton polygon of SBC(B(a,m), N).
If an is not a vertex of SBC(B(a,m), 2n+ 1) and the Newton polygon is precisely computed
(in the sense mentioned above) then n is definitely not a vertex of NBC and we discard it.
If an is precisely computed and is a vertex of SBC(B(a,m), 2n+ 1) (not necessarily precisely
computed) then n is definitely a vertex of NBC,2n+1, and plausibly a vertex of NBC. In all
other cases the computation is imprecise and we add B(a,m) to the set CI i of balls B(a,m)
where the computation was not precise. It remains to further verify if n is a vertex of NBC

in the plausible case. For this, we apply Lemma 14. Since an was precisely computed so is
the upper bound N from Lemma 14. We apply to NBC,N the procedure described above in
the case of NBC,2n+1. Either n is definitely a vertex of NBC,N and, by Lemma 14, definitely a
vertex of NBC, or n is definitely not a vertex, or B(a,m) is added to CI i. We determine the
largest n ≤ 15 which is definitely a vertex by going backwards from 15 with this verification
until we arrive at a vertex.

If B(a,m) has not yet been added to CI i, we compute the Newton polygons of ST2(B(a,m), n)
and SBC(B(a,m), n). If these Newton polygons are precisely computed we verify the Buzzard-
Calegari conjecture up to the vertex n by checking if the polygons are equal.

At the end of iteration i we are left with a subset CI i ⊂ Ci of balls over which our
computations were not precise enough to verify Buzzard-Calegari. For each B(a,m) ∈ CI i
we produce two half balls B(a,m + 1) and B(a + 2m+1,m + 1) and add them to Ci+1, the
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collections Ci+1 and CI i having the same union. In iteration i+ 1 we will verify the corollary
for the balls in Ci+1, each of which has smaller radius than the balls in Ci, and therefore more
likely to yield a precise computation of Newton polygons.

In 23 iterations which ran for about 6 minutes on a laptop the algorithm examined every
one of the 1058 balls in C1 and established the validity of the theorem, including the existence
of a vertex of NBC in the interval [7, 15].

Finally, we remark that the constants in the Appendix are known to sufficient precision
to make the above computations correct. Indeed, by the remark after Theorem 12 we know
these constants up to precision 140. Since the balls B(a,m) in every Ci have radius valuation
at most m = 84, it follows that if the center a is approximated by a′ with precision 140 then
B(a,m) = B(a′,m). �

We now turn our attention to the relationship between N(PT2) and N(P deg≤m
T2

). The
following result is a variant of Lemma 14 for the characteristic polynomial of T2.

Lemma 15. Suppose k � 6 is an integer and 1 ≤ n ≤ 15. The Newton polygon of PT2(X)
has a vertex at n if and only if so does the Newton polygon of PT2(X) truncated in degree

mn,k =
1

4
(8 + λ+

√
(8 + λ)2 − 8(4 + λn− fn)),

where fn is the expression on the right hand side of Theorem 12 and λ = max
0≤a<n

fn−fa
n−a . In

this case, we further have N(PT2)
≤n = N(P deg≤n

T2
).

Proof. Let bn be the coefficient of Xn in the characteristic polynomial of Tp acting on the
space of modular forms Mk+jd(p−1). Set dj = dimMk+j(p−1), d = 4 if p = 2, 3 if p = 3 and 1
if p ≥ 5. Then [17, Lemma 2.1] used as in the proof of [18, Lemma 3.1] implies that

vp(bn(k + jd(p− 1))) ≥ d(p− 1)

p+ 1

(∑̀
u=0

u(du − du−1) + (`+ 1)(n− d`)

)
−
(

1 +
d− 1

p+ 1

)
where ` is such that d` ≤ n < d`+1.

Note that du = bk+ud(p−1)
12

c+ δu, where δu = 1 unless k+ud(p− 1) ≡ 2 (mod 12) in which

case δu = 0. This implies that k+ud(p−1)
12

− 1 ≤ du ≤ k+ud(p−1)
12

+ 1 and

12n− 12− k
d(p− 1)

− 1 < ` ≤ 12n+ 12− k
d(p− 1)

.

Therefore

vp(bn(k + jd(p− 1))) ≥ d(p− 1)

p+ 1

(
(`+ 1)n−

∑
u=0

du

)
−
(

1 +
d− 1

p+ 1

)
n

≥ d(p− 1)

p+ 1

(
(`+ 1)

(
n− k

12
− 1

)
− d(p− 1)`(`+ 1)

24

)
−
(

1 +
d− 1

p+ 1

)
n.
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Using the bounds on ` we see that

vp(bn(k + jd(p− 1))) ≥ d(p− 1)

p+ 1
(`+ 1)

(
n− k

12
− 1− d(p− 1)`

24

)
−
(

1 +
d− 1

p+ 1

)
n

>
d(p− 1)

p+ 1

12n− 12− k
d(p− 1)

(n/2− k/24− 3/2)− n

=
6

p+ 1
(n− k/12− 1)(n− k/12− 3/2)−

(
1 +

d− 1

p+ 1

)
n.

When p = 2, d = 4 and k can be taken between 0 and 3. We therefore obtain the uniform
bound

(4) v2(bn) ≥ 2n2 − 8n+ 35/8 > 2(n− 2)2 − 4.

for all n ≥ 1 and k � 6.
As in Lemma 14, to verify whether n is a vertex of N(PT2) it suffices to compare slopes

(using Theorem 12 for n ≤ 15):

max
0≤a<n

fn − fa
n− a

<
v2(bm)− fn
m− n

for all m > n. However, using (4) we see that the above inequality is automatically satisfied
for m ≥ mn,k and therefore it suffices to verify that n is a vertex of the Newton polygon of
the truncation in degree mn,k. �

Remark 5. In principle, one should be able to strengthen Theorem 13 using Lemma 15 and
obtain a result of the form: the Buzzard-Calegari Conjecture 1 is true up to n ≤ D. As
stated, our computations suffice to show

N≤4
BC = N(PT2)

≤4,

for all sufficiently large weights. Unfortunately, to verify Theorem 13 with N(PT2)
≤n instead

of N(P deg≤n
T2

) one would need to compute Theorem 12 up to n = 42, which is currently

unfeasible. However, computing Theorem 12 up to n = 16 would suffice to show N≤5
BC =

N(PT2)
≤5.

Finally, for each 2-adic ball B(a,m) from the proof of Theorem 13 we have computed a
D such that N≤DBC = N(PT2)

≤D, obtaining the example that N≤13
BC = N(PT2)

≤13 for k ≡ 34
(mod 211).

We end this section with an appealing application of Theorem 13 to Hatada’s congru-
ences, namely Corollary 3. The computations that led to Theorem 13 imply that the lowest
two Newton slopes of P deg≤15

T2
are precisely the pairs listed in the introduction, the values

depending on k (mod 64) as specified. By (4) all Newton slopes of PT2 in the region ≥ 15
are at least 12, and therefore Theorem 13 suffices to verify that the lowest 2 slopes of PT2
coincide with the lowest two slopes of P deg≤15

T2
.

18



6. Appendix: 2-adic valuations of the traces of T2

In the following table, for each n ≤ 5 we make explicit the terms that appear in v2(Tr(∧nTp|S2k))
from Theorem 12, and those defining the sequence an from equation (3) in Section 5. The
2-adic numbers Ωi are given modulo 250.

The complete table for all n ≤ 15 is available online [7].

n v2(k − Ωi) or min(nj, 2v2(k − uj)) in v2(Tr(∧nT2|S2k)) v2(k − `) in an v2(Ωi − `) or v2(uj − `)
1 v2(k − 442980431217671) v2(k − 7) 10
2 v2(k − 791247700865546) v2(k − 10) 9

v2(k − 31828396041227) v2(k − 11) 10
v2(k − 335062469580877) v2(k − 13) 6

3 v2(k − 48255093739981) v2(k − 13) 6
v2(k − 895017375933454) v2(k − 14) 10
v2(k − 16843008520207) v2(k − 15) 12
v2(k − 250702637217616) v2(k − 16) 6
v2(k − 46624142875857) v2(k − 17) 6
v2(k − 474794944364563) v2(k − 19) 28

4 v2(k − 798532487856848) v2(k − 16) 6
v2(k − 658899949170001) v2(k − 17) 6
v2(k − 568752135614482) v2(k − 18) 12
min(15, 2 · v2(k − 19)) 2 · v2(k − 19) ∞
v2(k − 1103383114654676) v2(k − 20) 6
v2(k − 60661288646421) v2(k − 21) 8
v2(k − 1080512839942166) v2(k − 22) 31
v2(k − 339362545926167) v2(k − 23) 33
v2(k − 824086375843865) v2(k − 25) 11

5 v2(k − 912948839579667) v2(k − 19) 19
v2(k − 929666093061716) v2(k − 20) 6
v2(k − 1090275108829461) v2(k − 21) 8
min(15, 2 · v2(k − 22)) 2 · v2(k − 22) ∞
min(16, 2 · v2(k − 151)) 2 · v2(k − 23) 7
v2(k − 215022683507480) v2(k − 24) 8
v2(k − 188349340154137) v2(k − 25) 8
v2(k − 25411498307609) v2(k − 25) 12
v2(k − 255292856074266) v2(k − 26) 36
v2(k − 893284478091291) v2(k − 27) 36
v2(k − 378319707637788) v2(k − 28) 11
v2(k − 436532622338077) v2(k − 29) 11
v2(k − 669602715533343) v2(k − 31) 27
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