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Abstract. In this paper we estimate sums of the form
∑
n≤X |aSymm π(|f(n)|)|, for symmetric power lifts

of automorphic representations π attached to holomorphic forms and polynomials f(x) ∈ Z[x] of arbitrary

degree. We give new upper bounds for these sums under certain natural assumptions on f . Our results
are unconditional when deg(f) ≤ 4. Moreover, we study the analogous sum over polynomials in several

variables. We obtain an estimate for all cubic polynomials in two variables that define elliptic curves.

1. Introduction

A basic goal of the theory of automorphic forms is to estimate sums of Hecke eigenvalues. In this paper
we consider a finer version of this problem, where the sum is taken over values of polynomials f(x) ∈ Z[x].
Averages over sparse sequences of this type have applications to studying moments of L-functions, and to
establishing non-vanishing results. On a related note, sums over values f(p) restricted to primes p, are
relevant to some questions arising from the Beyond Endoscopy approach proposed by Langlands.

Notable advances for nonlinear polynomials are rather scarce. The case of quadratic polynomials f(x)
has been investigated first by Blomer [Blo08], and later by Templier [Tem11], as well as Templier and
Tsimerman [TT13]. By taking absolute values of the summation terms, Kim [Kim07] obtained a conditional
result for polynomials of arbitrary degree in the setting of cuspidal automorphic representations π of GL(2).
Assuming the strong Artin conjecture, he showed that

∑
n≤X |aπ(f(n))|2 � X, where aπ(n) are the Dirichlet

coefficients of the L-function of π. Kim’s argument rests on an estimate of Barban and Vehov [BV69]
concerning multiplicative functions g(n) ≥ 0 with the property that there exists a constant c such that
g(pk) � kc for all primes p and positive integers k. It appears to have been overlooked in [Kim07] that, in
order to be able to apply [BV69] for g(n) = |aπ(n)|2, the Ramanujan conjecture for π must be assumed.

An immediate consequence of Kim’s result, under the appropriate assumptions, is the upper bound∑
n≤X

|aπ(f(n))| � X. (1)

Special cases suggest that it should be possible to improve this bound, perhaps by saving a power of
logX. For example, if π is generated by a holomorphic cusp form without complex multiplication (CM), the
Sato-Tate conjecture implies the asymptotics∑

n≤X

|aπ(n)| ∼ c X

(logX)δ
,

for some positive constant c and δ = 1 − 8/3π ≈ 0.151. Furthermore, if ` is a fixed nonzero integer and π
corresponds to a Maass form, Holowinsky [Hol09] showed that∑

n≤X

|aπ(n)aπ(n+ `)| � X

(logX)δ
,

for some absolute positive constant δ < 2(1 − 8/3π), which is essentially the case f(x) = x(x + `). Such
estimates for shifted convolution sums have played a pivotal role in the resolution of the mass equidistribution
conjecture for the surface SL2(Z)\H (cf. [HS10]).

In the first theorem of this article we obtain a logarithm power saving over the bound (1), in a broader
context. We maintain assumptions similar to those in [Kim07]. As explained there, one can associate to a
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monic irreducible polynomial f(x) ∈ Z[x] of degree d ≥ 2 a permutation representation acting on its roots.
This can be thought of as a Galois representation, which is the sum of the trivial representation and another
(d − 1)-dimensional Artin representation σf with the property that the number of solutions of f modulo a
prime p is ρf (p) := 1 + tr σf(Frobp). The strong Artin conjecture, or more generally Langlands’ principle of
functoriality, predicts that there exists an automorphic representation π′(f) of GL(d− 1,AQ) with the same
L-function as σf . In this case we refer to σf as being automorphic (or modular).

A novel feature of our result is that it applies not only to representations π attached to holomorphic
forms, but also to every symmetric power Symm π, provided that σf is automorphic. The existence of all
symmetric powers lifts has recently been established by Newton and Thorne [NT21b] for all cuspidal Hecke
eigenforms. Another important aspect is that our estimate holds in short intervals as well.

Theorem 1.1. Let π be a cuspidal automorphic representation of GL(2,AQ) with trivial central character,
defined by a non-CM holomorphic newform of weight k ≥ 2. Suppose f(x) ∈ Z[x] is a monic irreducible
polynomial, with no fixed prime divisor. Let 0 < ε < 1/10, 0 < β < 1, and a, q ∈ Z with 0 < a ≤ q and
(q, f(a)) = 1. If σf is automorphic then for every integer m ≥ 1 we have

∑
X−X0<n≤X
n≡a (mod q)

|aSymm π(|f(n)|)| � X0

q
· (logX0)

− m
2(m+2)2 , (2)

uniformly for Xε ≤ X0 ≤ X and 1 ≤ q ≤ X1−β
0 . The implied constant depends on m, π and f.

The condition that f(x) has no fixed prime divisor means that there is no prime dividing f(x) for every
integer x; it holds precisely when ρf (p) < p for all primes p. This mild requirement is all we need to apply
a very general theorem of Nair and Tenenbaum [NT98] that reduces the problem to bounding sums over
primes of the form

∑
p≤X ρf (p)|aSymm π(p)|/p. The modularity of σf provides a means of compatibility, in

an analytic sense, between the Frobenius traces of σf and the Hecke eigenvalues of Symm π. The rest of the
proof combines an insight inspired by Holowinsky’s sieve method for shifted convolution sums [Hol09] with
certain properties of the adjoint lift; this is detailed in Section 3.

For polynomials of small degree we can explicitly construct the automorphic representation π′(f) corre-
sponding to σf , so our result is unconditional.

Corollary 1.2. Let f(x) ∈ Z[x] be a monic irreducible polynomial, with no fixed prime divisor. Assume that
deg f ≤ 4. Then σf is automorphic. In particular, the upper bound (2) holds for all such polynomials f .

Our second main result is concerned with an estimate over cubic polynomials in two variables, which
can be viewed as Weierstrass equations defining elliptic curves. This question fits into a more general
framework, as developed by de la Bretèche and Browning [dlBB06], who investigated the average order of
certain multiplicative functions over values taken by general binary forms. We also mention the recent work
of Lachand [Lac18] in the case of the special cubic form X3

1 + 2X3
2 .

Theorem 1.3. Let π be a non-dihedral cuspidal automorphic representation of GL(2,AQ) satisfying the
Ramanujan conjecture. Consider an irreducible polynomial

E(x, y) = y2 − x3 − ax− b ∈ Z[x, y]

with discriminant 4a3 + 27b2 6= 0. Let γ2 ≥ γ1 > 0, and X,Y ≥ 100 such that Y γ1 ≤ X ≤ Y γ2 . Let
α, β ∈ (0, 1), and Xα ≤ X0 ≤ X, Y β ≤ Y0 ≤ Y. Then∑

X−X0<m≤X
Y−Y0<n≤Y

|aπ(|E(m,n)|)| � X0Y0

(logX0Y0)1/18
, (3)

where the implied constant depends on α, β, γ1, γ2 and π.
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Our argument in Theorem 1.3 is robust enough to be applied to any modular variety defined by polynomials
in Z[x1, x2, . . . , xm]. In fact, one does not even need explicit polynomials to define the variety; all that is
required is the modularity condition. In Section 2 we give all the necessary ingredients for the general case,
particularly Proposition 2.2. To simplify notations, we opted to state Theorem 1.3 for elliptic curves.

The principal technical difficulty that we must overcome is adapting the methods of [Nai92] and [NT98]
to several variables. In contrast with [Nai92], Brun’s sieve does not seem to be amenable to our setting, so
we make use of Selberg’s upper bound sieve instead. For polynomials in two variables on smooth domains,
an approach of similar flavor appears in the work of Khayutin [Kha19], where a conditional proof of the
“Mixing Conjecture” of Michel and Venkatesh [MV06] is presented.

Acknowledgements. We thank Andrei Jorza and Peter Sarnak for many conversations and suggestions con-
cerning this project, and also for their encouragement.

2. Sieve Bounds

We start this section with a brief review of a fundamental result on short sums of certain arithmetic
functions in arithmetic progressions due to Nair and Tenenbaum [NT98]. In order to state it, we first need
to introduce some notation.

For any A,B ≥ 1, ε > 0 and k ∈ Z+, we denote by Mk(A,B, ε) the class of non-negative arithmetic
functions F (n1, · · · , nk) in k variables satisfying

F (m1n1, · · · ,mknk) ≤ min{AωQ(m), Bmε} · F (n1, · · · , nk), m := m1 · · ·mk,

where ωQ(m) denotes the number of prime factors of m counted with multiplicity; and (mj , nj) = 1, for
1 ≤ j ≤ k.

Let Qj ∈ Z[x], 1 ≤ j ≤ k be polynomials with factorization

Qj(x) =

r∏
i=1

Ri(x)γji , 1 ≤ j ≤ k,

where the polynomials Ri(x) ∈ Z[x] are irreducible over Q. For a polynomial Q ∈ Z[x1, · · · , xn], n ≥ 1, let

ρQ(c) = #
{

(r1, · · · , rn) ∈ (Z/cZ)n : Q(r1, · · · , rn) ≡ 0 (mod c)} (4)

Write ρi(n) = ρRi(n) for 1 ≤ i ≤ r. Define

ϑ(n;F, ρ) :=
∑†

n
γ1
1 ···n

γr
r =n

F (

r∏
i=1

nγ1i1 , · · · ,
r∏
i=1

nγkir ) · ρ1(n1) · · · ρr(nr)
n1 · · ·nr

,

where the † symbol indicates that the r-fold sum is restricted to pairwise coprime variables. Also, for a
polynomial Q(x) =

∑
i aix

i ∈ Z[x], set ‖Q‖ = maxi |ai|.
The Nair-Tenenbaum bound ([NT98], Corollary 1) can now be stated as follows:

Lemma 2.1. Let A,B ≥ 1, g ∈ Z+, 0 < ε < 1/8g2, 0 < β < 1, 0 < δ ≤ 1/2g, and let r, k be arbitrary

positive integers. Let f ∈ Mk(A,B, εβδ/6) and Qj ∈ Z[X] (1 ≤ j ≤ k) be such that Q =
∏k
j=1Qj has no

fixed prime divisor. Let a, q ∈ Z+, with a ≤ q and (q,Q(a)) = 1. Then∑
x<n<x+y

n≡a (mod q)

F (|Q1(n)|, · · · , |Qk(n)|)� y

q

∏
p≤x
p-q

(
1− ρQ(p)

p

) ∑
n≤x

(n,q)=1

ϑ(n;F, ρ) (5)

uniformly for x ≥ c1‖Q‖2δ, x4g2ε ≤ y ≤ x, 1 ≤ q ≤ y1−β . The implied constant in � sign depends at most
on A,B, ε, β, δ, k, r, g and the discriminant of Q. The constant c1 relies at most on A,B, ε, δ, k, r, g.

Note that the sum on the left hand side is essentially the average of a multiplicative function F evaluated
at absolute values of the polynomial Q1Q2 · · ·Qk, which is still a single variable function. To prove Theorem
1.3 we need a similar sieve estimate for polynomials in several variables.

The main result of this section is the following:
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Proposition 2.2. Let h ≥ 0 be a multiplicative function bounded by the k-th divisor function, for some
integer k ≥ 1. Let Q ∈ Z[x1, x2, · · · , xn] be an irreducible polynomial, and let ρQ be defined as in (4).
Suppose there is a constant 0 < δ < 1 such that for all integers l ≥ 1 and all primes p we have

|ρQ(pl)− p(n−1)l| � p(1−δ)(n−1)l. (6)

For 1 ≤ j ≤ n consider positive integers Xj ≥ X ′j such that

max
1≤j≤n

logXj � min
1≤j≤n

logX ′j . (7)

Denote by X ′ = X ′1 · · ·X ′n. Then we have

∑
Xj−X′j<mj≤Xj , 1≤j≤n

h(|Q(m1,m2, · · · ,mn)|)� X ′ · exp

 ∑
p≤X′1X′2···X′n

ωQ(p) · (h(p)− 1)

p

 , (8)

where ωQ(p) = ρQ(p)/pn−1, and the implied constant depends only on k, Q and the implied constant in (7).

It is important to emphasize that one cannot apply Brun’s sieve, as in [Nai92], to prove Proposition 2.2.
The reason is that the crucial condition (R), detailed in Halberstam and Richert [HR74], does not hold in
the case of several variables. The remaining part of this section is concerned with the proof of Proposition
2.2.

2.1. Preliminaries. First, we obtain an estimate using Selberg’s upper bound sieve.
Throughout the paper, we shall denote by P−(m) the least prime factor of the integer m. For an integer

d, let ωQ(d) = ρQ(d)/dn−1.

Lemma 2.3. Suppose Q(x1, x2, · · · , xn) ∈ Z[x1, x2, · · · , xn] is an irreducible polynomial satisfying (6). For
1 ≤ j ≤ n, let Xj , X

′
j , z > 0 with z2 ≤ X ′j ≤ Xj . Let X ′′ := min{X ′1, · · · , X ′n}. Then for every positive

integer c we have

S :=
∑

X1−X′1<m1≤X

· · ·
∑

Xn−X′n<mn≤Xn
P−(Q(m1,m2,··· ,mn))≥z,

(Q(m1,··· ,mn),c)=1

1� X ′ ·
∏
p<z
p-c

(
1− ρQ(p)

pn

)
+
z2X ′(log z)3

X ′′
,

where the implied constant depends at most on Q. In particular, the implied constant is independent of c.

Proof. Set Pc =
{
p : p - c, p prime

}
and let

Pc(z) =
∏

p<z, (p,c)=1

p.

Define

S(Pc, z) :=
∑

X1−X′1<m1≤X

· · ·
∑

Xn−X′n<mn≤Xn
(Q(m1,··· ,mn),Pc(z))=1

1.

Note that S ≤ S(Pc, z). Let

G(z) =
∑
d<z

(d,c)=1

µ(d)2ωQ(d)

d
∏
p|d(1− ωQ(p)p−1)

=
∑
d<z

(d,c)=1

µ(d)2
∏
p|d

ωQ(p)p−1

(1− ωQ(p)p−1)
=

∏
p<z

(p,c)=1

1

(1− ωQ(p)p−1)
.

For 1 ≤ d ≤ z2, d | Pc(z), define

Ad :=
∑

X1−X′1<m1≤X

· · ·
∑

Xn−X′n<mn≤Xn
d|Q(m1,··· ,mn)

1

=
∑

0≤r1<d

· · ·
∑

0≤rn<d
d|Q(r1,··· ,rn)

1
∑

X1−X′1−r1
d <m1≤X1−r1

d

· · ·
∑

Xn−X′n−rm
d <mn≤Xn−rmd

1.

4



By definition,

Ad =
∑

0≤r1<d

· · ·
∑

0≤rn<d
d|Q(r1,··· ,rn)

n∏
i=1

(
X ′i
d

+ αi

)
=

∑
0≤r1<d

· · ·
∑

0≤rn<d
d|Q(r1,··· ,rn)

X ′

dn

n∏
i=1

(
1 +

αid

X ′i

)
,

where |αi| ≤ 1, 1 ≤ i ≤ n. Hence, expanding the inner product we obtain

Ad =
ωQ(d)X ′

d

(
1 +O

(
n∑
i=1

d

X ′i

))
=
ωQ(d)X ′

d
+O

(
ωQ(d)X ′

X ′′

)
,

where the implied constant depends at most on Q. In particular, A1 = X ′ +O(X ′/X ′′). As a consequence,

Rd :=

∣∣∣∣Ad − ωQ(d)

d
·A1

∣∣∣∣� ωQ(d)X ′

X ′′
.

Denote by ν(d) is the number of district prime divisors of d. By Rankin’s trick, we have the estimate∑
d<z2

d|Pc(z)

3ν(d)ωQ(d) ≤ z2
∑
d<z2

d|Pc(z)

3ν(d)ωQ(d)

d
≤ z2

∏
p<z

(
1 +

ωQ(p)

p

)3

� z2(log z)3,

where the last inequality follows from Mertens formula in conjunction with the assumption (6), and the
implied constant depends on Q. Hence we derive that∑

d<z2

d|Pc(z)

3ν(d)|Rd| �
z2X ′(log z)3

X ′′
.

Finally, Selberg’s upper bound sieve gives

S(Pc, z) ≤
A1

G(z)
+
∑
d<z2

d|Pc(z)

3ν(d)|Rd| � X ′ ·
∏
p<z
p-c

(
1− ρQ(p)

pn

)
+
z2X ′(log z)3

X ′′
,

where the implied constant depends on Q. �

Next, we present a variant of [Nai92, Lemma 2] adapted to our setting.

Lemma 2.4. With the same notation as before, for every z ≥ 2 the following hold:

(i) If 1 ≤ l ≤ log z then ∏
p<z1/l

(
1− ωQ(p)

p

)
� l ·

∏
p<z

(
1− ωQ(p)

p

)
.

(ii) Let ϕ be Euler’s totient function. If c > 0 is an integer then∏
p<z1/2

p-c

(
1− ωQ(p)

p

)
� c

ϕ(c)
·
∏
p<z

(
1− ωQ(p)

p

)
.

(iii) Let H be a multiplicative function bounded by the k-th divisor function, for some k ≥ 2. Then

∑
n≤z

H(n)ωQ(n)

n
� exp

∑
p≤z

H(p)ωQ(p)

p

 .
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2.2. Proof of Proposition 2.2. Without loss of generality, we can take

z = min{X ′
1
10

1 , X
′ 1
10

2 , · · · , X ′
1
10
n } = X ′′

1
10

to be the sifting level. Consider the following set

B = {(m1,m2, · · · ,mn) ∈ ZN : X1 −X ′1 < m1 ≤ X1, X2 −X ′2 < m2 ≤ X2, · · · , Xn −X ′n < mn ≤ Xn}.
For m := (m1,m2, · · · ,mn) ∈ B, we define the quantities Am and Bm as follows. First write

|Q(m1,m2, · · · ,mn)| =
l∏
i=1

pkii , p1 < p2 < · · · < pl, ki > 0, 1 ≤ i ≤ l.

• If pk11 > z set Am = 1.

• If pk11 ≤ z take j ≤ l to be the largest index such that pk11 · · · p
kj
j ≤ z, and set Am = pk11 · · · p

kj
j .

• Let Bm = |Q(m1,m2, · · · ,mn)|/Am.

We decompose B into four disjoint sets, as in [Shi80]:

B1 = {m = (m1,m2, · · · ,mn) ∈ B : P−(Bm) ≥ z1/2},

B2 = {m = (m1,m2, · · · ,mn) ∈ B : P−(Bm) < z1/2, Am ≤ z1/2},

B3 = {m = (m1,m2, · · · ,mn) ∈ B : P−(Bm) < log z log log z, Am > z1/2},

B4 = {m = (m1,m2, · · · ,mn) ∈ B : log z log log z < P−(Bm) < z1/2, Am > z1/2}.

Here P−(n) and P+(n) denote the least and the greatest prime factor of n, respectively.

In the next four Lemmas (2.5-2.8), we bound the contribution from each set Bi. We maintain the same
notations and assumptions as in the statement of Proposition 2.2.

Lemma 2.5. Let B1 = {m = (m1,m2, · · · ,mn) ∈ B : P−(Bm) ≥ z1/2}. Then

∑
(m1,m2,··· ,mn)∈B1

h(|Q(m1,m2, · · · ,mn)|)�n,k X
′ exp

∑
p≤z

ωQ(p) · (h(p)− 1)

p

 . (9)

Proof. By the definition of B1 and the multiplicativity of h, we have∑
(m1,m2,··· ,mn)∈B1

h(|Q(m1,m2, · · · ,mn)|)�
∑
c≤z

h(c)
∑†

(m1,m2,··· ,mn)∈B1

h(Bm), (10)

where the symbol † indicates that the inner sum is over the pairs (m1,m2, · · · ,mn) ∈ B1 such that c |
Q(m1,m2, · · · ,mn) and (c,Bm) = 1. Let

MQ(Xj , X
′
j : 1 ≤ j ≤ n) := max

Xj−X′j<mj≤Xj , 1≤j≤n
|Q(m1,m2, · · · ,mn)|.

To simplify notation, we shall write MQ for MQ(Xj , X
′
j : 1 ≤ j ≤ n); this quantity will also appear in the

following Lemmas. Then by (7) one has logMQ � log z. Hence

zΩ(Bm)/2 ≤ Bm �
MQ

c
≤MQ,

where Ω(Bm) is the number of prime divisors (with multiplicity). So Ω(Bm) ≤ 2 logMQ

log z + O(1) = O(1),

implying that h(Bm)� AΩ(Bm) � 1. Substituting this into (10) we obtain∑
(m1,m2,··· ,mn)∈B1

h(|Q(m1,m2, · · · ,mn)|)�k

∑
c≤z

h(c)
∑†

(m1,m2,··· ,mn)∈B1

1. (11)

We can express the right-hand side of (11) as∑
c≤z

h(c)
∑

(r1,r2,··· ,rn)∈Rc

∑†

(m1,m2,··· ,mn)∈B1

mj≡rj (mod c), 1≤j≤n

1, (12)
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where Rc ⊆ (Z/cZ)n denotes the set of solutions of Q(x1, x2, · · · , xn) ≡ 0 (mod c). Write mj = cqj + rj ,

1 ≤ j ≤ n. Then Q(m1,m2, · · · ,mn) ≡ Q(r1, r2, · · · , rn) (mod c). Hence, Q(m1,m2,··· ,mn)−Q(r1,r2,··· ,rn)
c is

an integer. Denote it by P (qj , rj : 1 ≤ j ≤ n). Let Q(r1, r2, · · · , rn) = cR(r1, r2, · · · , rn). Then the dagger
condition on the inner sum in (12) becomes

Xj−X′j−rj
c < qj ≤ Xj−rj

c , 1 ≤ j ≤ n,
P−(R(r1, r2, · · · , rn) + P (qj , rj : 1 ≤ j ≤ n)) ≥ z1/2,

(c,R(r1, r2, · · · , rn) + P (qj , rj : 1 ≤ j ≤ n)) = 1.

Note that by definition of z, one has X ′j/c ≥ z1/2, 1 ≤ j ≤ n. Now we can apply Lemma 2.3 with

Q̃(x1, x2, · · · , xn) = R(r1, r2, · · · , rn) + P (xj , rj : 1 ≤ j ≤ n) to see that∑†

(m1,m2,··· ,mn)∈B1

mj≡ri (mod c), 1≤j≤n

1� X ′

cn
·
∏
p<z
p-c

(
1−

ρQ̃(p)

pn

)
. (13)

Since Q(cx1 + r1, cx2 + r2, · · · , cxn + rn) = cQ̃(x1, x2, · · · , xn), we conclude that ρQ(p) = ρQ̃(p) if p - c.
So combining (11), (12) with (13) we then obtain∑

(m1,m2,··· ,mn)∈B1

h(|Q(m1,m2, · · · ,mn)|)�X ′
∑
c≤z

∑
(r1,r2,··· ,rn)∈Rc

h(c)

cn
·
∏
p<z
p-c

(
1− ρQ(p)

pn

)

=X ′
∑
c≤z

h(c)ρQ(c)

cn
·
∏
p<z
p-c

(
1− ωQ(p)

p

)
.

By Lemma 2.4 (ii), we have ∏
p<z
p-c

(
1− ωQ(p)

p

)
� c

ϕ(c)

∏
p<z

(
1− ωQ(p)

p

)
.

Using Lemma 2.4 (iii) for the multiplicative function H(c) = ch(c)/ϕ(c) it follows that∑
(m1,m2,··· ,mn)∈B1

h(|Q(m1,m2, · · · ,mn)|)� X ′
∏
p<z

(
1− ωQ(p)

p

)
exp

(∑
p<z

h(p)ωQ(p)

p

)
,

which combined with the assumption (6) implies the estimate (9). �

Lemma 2.6. Let B2 = {m = (m1,m2, · · · ,mn) ∈ B : P−(Bm) < z1/2, Am ≤ z1/2}. Then

∑
(m1,m2,··· ,mn)∈B2

h(|Q(m1,m2, · · · ,mn)|)�k X
′ · exp

∑
p≤z

ωQ(p) · (h(p)− 1)

p

 . (14)

Proof. By definition, for each (m1,m2, · · · ,mn) ∈ B2 there is a corresponding prime power pl such that
pl‖Q(m1,m2, · · · ,mn), p ≤ z1/2 and pl > z1/2. For each p ≤ z1/2, denote by lp the least integer l such that

pl > z1/2. Then lp ≥ 2 and max{z1/2, p2} ≤ plp ≤ z. Therefore,∑
(m1,m2,··· ,mn)∈B2

1 ≤
∑

p≤z1/2

∑
Xj−X′j<mj≤Xj , 1≤j≤n
plp |Q(m1,m2,··· ,mn)

1 =
∑

p≤z1/2

X ′ρQ(plp)

pnlp
·
(

1 +O

(
plp

X ′′

))
.

By definition, z = X ′′
1
10 , so plp/X ′′ ≤ z/X ′′ � 1. According to (6) we have ρQ(plp)� p(n−1)lp . Therefore,∑

(m1,m2,··· ,mn)∈B2

1�
∑

p≤z1/2

X ′

plp
�

∑
p≤z1/4

X ′

z1/2
+

∑
z1/4<p≤z1/2

X ′

p2
� X ′

z1/4
. (15)
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On the other hand, we have

h(|Q(m1,m2, · · · ,mn)|) ≤ dk(|Q(m1,m2, · · · ,mn)|)�k M
A

log logMQ

Q (16)

for some absolute constant A > 0.
Substituting (16) into (15) gives∑

(m1,m2,··· ,mn)∈B2

h(|Q(m1,m2, · · · ,mn)|)�M
A

log logMQ

Q · X
′

z1/4
. (17)

Note that by assumption (7), M
A

log logMQ

Q � X ′′
1
50 = z1/5. Moreover, since h ≥ 0, then

∑
p≤z

ωQ(p) · (h(p)− 1)

p
≥ −

∑
p≤z

ωQ(p)

p
= −

∑
p≤z

1

p
+O

∑
p≤z

p−2−δ(n−1)

 = − log log z +O(1). (18)

Therefore, it follows from (17) and (18) that

∑
(m1,m2,··· ,mn)∈B2

h(|Q(m1,m2, · · · ,mn)|)� X ′

z1/20
� X ′ exp

∑
p≤z

ωQ(p) · (h(p)− 1)

p

 ,

proving the estimate (14). �

Lemma 2.7. Let B3 = {m = (m1,m2, · · · ,mn) ∈ B : P−(Bm) < log z log log z, Am > z1/2}. Then

∑
(m1,m2,··· ,mn)∈B3

h(|Q(m1,m2, · · · ,mn)|)�k X
′ exp

∑
p≤z

ωQ(p) · (h(p)− 1)

p

 . (19)

Proof. By definition, for each (m1,m2, · · · ,mn) ∈ B3 there exists some integer c | Q(m1,m2, · · · ,mn) such
that z1/2 < c ≤ z, and P+(c) < log z log log z. Hence∑

(m1,m2,··· ,mn)∈B3

1 ≤
∑

z1/2<c≤z
P+(c)<log z log log z

∑
Xj−X′j<mj≤Xj , 1≤j≤n

c|Q(m1,m2,··· ,mn)

1� X ′
∑

z1/2<c≤z
P+(c)<log z log log z

ρQ(c)

cn
.

Appealing to (6) we then deduce that∑
(m1,m2,··· ,mn)∈B3

1� X ′
∑

z1/2<c≤z
P+(c)<log z log log z

1

c
� X ′

z1/2

∑
z1/2<c≤z

P+(c)<log z log log z

1� X ′

z1/2
· exp

(
3 log z√
log log z

)
.

We remark that the last inequality follows from the standard bound on de Bruijn function (e.g., [Shi80],
Lemma 1). Combining the above with (16) we obtain∑

(m1,m2,··· ,mn)∈B3

h(|Q(m1,m2, · · · ,mn)|)�kM
A

log logMQ

Q · X
′

z1/2
· exp

(
3 log z√
log log z

)

�X ′ exp

∑
p≤z

ωQ(p) · (h(p)− 1)

p

 ,

where the last inequality follows from (17) and (18). �

Lemma 2.8. Let B4 = {m = (m1,m2, · · · ,mn) ∈ B : log z log log z < P−(Bm) < z1/2, Am > z1/2}. Then

∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)�k X
′ exp

∑
p≤z

ωQ(p) · (h(p)− 1)

p

 . (20)
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Proof. By the definition of B4 and the multiplicativity of h, we have∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)�
∑

z1/2<c≤z

h(c)
∑∗

(m1,m2,··· ,mn)∈B4

h(Bm), (21)

where the asterisk indicates a sum over (m1,m2, · · · ,mn) ∈ B such that c | Q(m1,m2, · · · ,mn), log z log log z <
P−(Bm) ≤ z1/2 and (c,Bm) = 1, with Bm = |Q(m1,m2, · · · ,mn)|/c. Let L be the integral part of
log z/ log(log z log log z). For 2 ≤ l ≤ L, we consider the pairs (m1,m2, · · · ,mn) ∈ B4 such that z1/(l+1) <
P−(Bm) ≤ z1/l. Then by definition, P+(Am) < z1/l, and

MQ � |Q(m1,m2, · · · ,mn)| ≥ Bm ≥ P−(Bm)ωQ(Bm) ≥ zωQ(Bm)/(l+1).

Hence, ωQ(Bm) � l, implying that h(Bm) ≤ Cl, for some positive constant C depending only on k.
Therefore, we have

∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)�
L∑
l=2

Cl
∑

z1/2<c≤z
P+(c)≤z1/l

h(c) ·
∑(l)

(m1,m2,··· ,mn)∈B4

1,

where the superscript (l) indicates a sum over (m1,m2, · · · ,mn) ∈ B such that c | Q(m1,m2, · · · ,mn),
z1/(l+1) < P−(Bm) ≤ z1/l and (c,Bm) = 1, with Bm = |Q(m1,m2, · · · ,mn)|/c. Denote by Rc ⊆ (Z/cZ)⊕n

the set of solutions of Q(x1, x2, · · · , xn) ≡ 0 (mod c). Then

∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)�
L∑
l=2

Cl
∑

z1/2<c≤z
P+(x)≤z1/l

h(c) ·
∑

(r1,r2,··· ,rn)∈Rc

∑(l)

(m1,m2,··· ,mn)∈B4

mj≡rj (mod c), 1≤j≤n

1. (22)

Similarly to (13), we can apply Lemma 2.3 to deduce that∑(l)

(m1,m2,··· ,mn)∈B4

mj≡rj (mod c), 1≤j≤n

1� X ′

cn

∏
p<z1/(l+1)

p-c

(
1− ρQ(p)

pn

)
. (23)

Inserting (23) into (22) we get

∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)� X ′
L∑
l=2

Cl
∑

z1/2<c≤z
P+(c)≤z1/l

h(c)ρQ(c)

cn

∏
p<z1/(l+1)

p-c

(
1− ωQ(p)

p

)
.

By Lemma 2.4, we obtain

∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)� X ′
L∑
l=2

(l + 1)Cl
∑

z1/2<c≤z
P+(c)≤z1/l

h(c)ρQ(c)

cn−1ϕ(c)

∏
p<z

(
1− ωQ(p)

p

)
.

Applying [Shi80, Lemma 4] for H(c) = h(c)ωQ(c)c/ϕ(c) we deduce that

∑
(m1,m2,··· ,mn)∈B4

h(|Q(m1,m2, · · · ,mn)|)�X ′
∏
p<z

(
1− ωQ(p)

p

) L∑
l=2

(l + 1)Cl exp

∑
p≤z

h(p)ωQ(p)

ϕ(p)
− l log l

10


�X ′

∏
p<z

(
1− ωQ(p)

p

)
exp

∑
p≤z

h(p)ωQ(p)

p

 ,

from which (20) is now clear. �
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Proof of Proposition 2.2. Since B is the disjoint union of B1, B3, B4, and B4, Proposition 2.2 is then obtained
from the estimates (9), (14), (19), (20), and the fact that∣∣∣∣∣ ∑

p≤X′1···X′n

ωQ(p) · (h(p)− 1)

p
−
∑
p≤z

ωQ(p) · (h(p)− 1)

p

∣∣∣∣∣�
∣∣∣∣∣ ∑
p≤X′

1

p
−
∑
p≤z

1

p

∣∣∣∣∣�
∣∣∣∣∣ log

logX ′

log z

∣∣∣∣∣� 1.

The last step above is a direct consequence of condition (7):

logX ′ = logX ′1X
′
2 · · ·X ′n � max

1≤j≤n
logXj � min

1≤j≤n
logX ′j � log z.

�

3. Proof of Main Theorems

A simple, yet fruitful idea is to bound the Hecke eigenvalues of an automorphic cuspidal representation in
terms of the Hecke eigenvalues of its adjoint lift (assuming it exists). The following elementary inequality led
to one of the first estimates of the sum

∑
n≤x |τ(n)| for the Ramanujan τ -function, without the knowledge

of the Sato-Tate conjecture (see [EMS84] for details). As already mentioned in the introduction, similar
inequalities were used by Holowinsky [Hol09] in his sieve method for shifted convolution sums.

Lemma 3.1. Let Π be a cuspidal automorphic representation of GL(n,AQ). Suppose that Π admits an
adjoint lifting, i.e., Ad Π is automorphic. Let p be a prime such that Πp is unramified and tempered. Then

|aΠ(p)| − 1 ≤ −|aAd Π(p)|2

2(n+ 1)2
+
aAd Π(p)

2
.

Proof. Since aAd Π(p) = |aΠ(p)|2 − 1 and |aΠ(p)| ≤ n, the inequality follows readily from the fact that

|x| ≤ 1 +
1

2
(x2 − 1)− 1

2(n+ 1)2
(x2 − 1)2

is true for all nonnegative real numbers x that are bounded by n in absolute value. �

To ensure the temperedness condition everywhere we shall take π to be a cuspidal representation attached
to a holomorphic newform of weight k ≥ 2. In this case, by a recent breakthrough of Newton and Thorne
[NT21b] (building on [NT21a]) we know the automorphy of the symmetric power lifting Symm π for all
m ≥ 1. In fact, we are also guaranteed that Symm π is cuspidal if we insist that the newform be without
complex multiplication (cf. [Ram09]).

The following technical result provides a key estimate for the proof of Theorem 1.1.

Proposition 3.2. Let π be a cuspidal automorphic representation of PGL(2,AQ) defined by a non-CM
holomorphic newform of weight k ≥ 2. Suppose f(x) ∈ Z[x] is a monic irreducible polynomial. Denote by
ρf (p) the number of solutions of f(x) ≡ 0 (mod p). If σf is automorphic then for every integer m ≥ 1 we
have ∑

p≤X

ρf (p) (|aSymm π(p)| − 1)

p
≤ − m

2(m+ 2)2
log logX +O(1),

where the implied constant O(1) depends only on m, π and f.

Proof. Let Π = Symm π. As discussed above, we know by [NT21b] that Π is a cuspidal automorphic
representation of GL(m+ 1).

Let N be the arithmetic conductor of π. Since π has trivial central character, for all primes p - N we have

aAd Π(p) =

m∑
l=1

aSym2l π(p). (24)

By definition, the quantity ρf (p) is nonnegative for all primes p, so Lemma 3.1 gives
10



∑
p≤X

(p,N)=1

ρf (p) (|aΠ(p)| − 1)

p
≤ − 1

2(m+ 2)2

∑
p≤X

(p,N)=1

ρf (p)|aAd Π(p)|2

p
+

1

2

∑
p≤X

(p,N)=1

ρf (p)aAd Π(p)

p
. (25)

Note that the contribution from the ramified primes is bounded by a constant. Indeed, since ρf (p) ≤ deg f
and |aΠ(p)| − 1 ≤ m for all primes p, we have∑

p≤X
p|N

ρf (p) (|aΠ(p)| − 1)

p
≤
∑
p≤X
p|N

m deg f

p
= O(1), (26)

where the implied constant depends on m, π and f . Therefore, combining (25) with (26) we obtain∑
p≤X

ρf (p) (|aΠ(p)| − 1)

p
≤ − 1

2(m+ 2)2

∑
p≤X

ρf (p)|aAd Π(p)|2

p
+

1

2

∑
p≤X

ρf (p)aAd Π(p)

p
+O(1). (27)

Since σf is assumed to be modular, there exists an automorphic representation π′(f) of GL(deg f−1,AQ)
such that ρf (p) = 1 + aπ′(f)(p), as explained in the introduction. For convenience we shall simply refer to
π′(f) as π′. Therefore, ρf (p)aAd Π(p) = aAd Π(p) + aπ′(p)aAd Π(p).

Let Df be the discriminant of f. Then π′ and π are both unramified at all primes p such that p - NDf .
By (24), for p - NDf , one has

aπ′(p)aAd Π(p) =

m∑
l=1

aπ′(p)aSym2l π(p) =

m∑
l=1

aπ′×Sym2l π(p), (28)

where aπ′×Sym2l π(p) is the Hecke eigenvalue of the Rankin-Selberg π′p � Sym2l πp. When p | NDf , we have
|aπ′(p)aAd Π(p)| ≤ m(deg f − 1)(2m + 1). Note that there are only finitely many such ramified primes,
depending only on N and Df . Hence by (24) and (28) we obtain∑

p≤X

ρf (p)aAd Π(p)

p
=

m∑
l=1

∑
p≤X

aSym2l π(p)

p
+

m∑
l=1

∑
p≤X

aπ′×Sym2l π(p)

p
+O(1). (29)

We claim that the isobaric representation π′(f) has no constituents equivalent to Sym2l π for l ≥ 1. One
way to see this is by looking at the corresponding Hodge-Tate weights. Let p be a prime away from NDf .

Fix an isomorphism C ' Qp, where Qp is the algebraic closure of Qp. Let Cp be the completion of Qp. Under

the isomorphism C ' Qp, we can regard σf as a (deg f − 1)-dimensional p-adic representation. Since σf is
locally trivial, tensoring with Cp it becomes Cp(0), which is a Hodge-Tate representation with Hodge-Tate
weights all equal to 0. On the other hand, if k ≥ 2 is the weight of the newform defining π, we have that the
Hodge-Tate weights of Sym2l π are (0, k−1, 2(k−1), · · · , 2l(k−1)) (e.g., from Proposition 4.3.1 of [CHT08]).
This, of course, is not equal to the zero vector since k ≥ 2.

It follows from the previous paragraph that the Rankin-Selberg L-function L(s, π′ × Sym2l π) is regular
at s = 1 for 1 ≤ l ≤ m. Therefore, both sums on the right-hand side of (29) are bounded, and so∑

p≤X

ρf (p)aAdπ(p)

p
= O(1), (30)

where the implied constant depends on m, π and f. Substituting the estimate (30) into (27) we then obtain

∑
p≤X

ρf (p) (|aΠ(p)| − 1)

p
≤ − 1

2(m+ 2)2

∑
p≤X

|aAd Π(p)|2

p
− 1

2(m+ 2)2

∑
p≤X

aπ′(p)|aAd Π(p)|2

p
+O(1). (31)

In view of (24) and the fact that Π is self-dual (and tempered) we can write

∑
p≤X
p-N

|aAd Π(p)|2

p
=

m∑
i=1

m∑
j=1

∑
p≤X
p-N

aSym2i π(p)aSym2j π(p)

p
=

m∑
i=1

m∑
j=1

∑
p≤X
p-N

aSym2i π×Sym2j π(p)

p
. (32)
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Moreover ∑
p≤X
p|N

|aAd Π(p)|2

p
= O(1) and

m∑
i=1

m∑
j=1

∑
p≤X
p|N

aSym2i π×Sym2j π(p)

p
= O(1). (33)

Hence, (32) and (33) combined with Selberg’s orthogonality relations (see, for example [LY05]) give∑
p≤X

|aAd Π(p)|2

p
=

m∑
i=1

m∑
j=1

∑
p≤X

aSym2i π×Sym2j π(p)

p
+O(1) = m log log x+O(1). (34)

Furthermore, using the decomposition (24) once again, we get

∑
p≤X
p-NDf

aπ′(p)|aAd Π(p)|2

p
=

m∑
i=1

m∑
j=1

∑
p≤X
p-NDf

aπ′(p)aSym2i π(p)aSym2j π(p)

p
=

m∑
i=1

m∑
j=1

∑
p≤X
p-NDf

aπ′(p)aΠi,j (p)

p
, (35)

where Πi,j = Sym2i π � Sym2j π. Note that for i ≥ j and p - N, we have

aΠi,j (p) = aSym2i π�Sym2j π(p) =

2j∑
l=0

aSym2(i−j+l) π(p), (36)

where Sym0 π := 1 the trivial representation and Sym1 π = π. Substituting (36) into (35) we then obtain∑
p≤X
p-NDf

aπ′(p)|aAd Π(p)|2

p
= 2

m∑
i=1

i∑
j=1

2j∑
l=0

∑
p≤X
p-NDf

aπ′(p)aSym2(i−j+l) π(p)

p
. (37)

On the other hand, we have∑
p≤X
p|NDf

aπ′(p)|aAd Π(p)|2

p
= O(1) and

m∑
i=1

i∑
j=1

2j∑
l=0

∑
p≤X
p|NDf

aπ′(p)aSym2(i−j+l) π(p)

p
= O(1). (38)

It then follows from (37) and (38) that∑
p≤X

aπ′(p)|aAd Π(p)|2

p
= 2

m∑
i=1

i∑
j=1

2j∑
l=0

∑
p≤X

aπ′(p)aSym2(i−j+l) π(p)

p
+O(1). (39)

Let S be the set of triples (i, j, l) with 0 ≤ l ≤ 2j and 1 ≤ j ≤ i ≤ m such that the Rankin-Selberg

L-function L(s, π′ × Sym2(i−j+l) π) has a pole at s = 1. Let (i, j, l) ∈ S. Denote by mi,j,l the multiplicity of

the pole of L(s, π′ × Sym2(i−j+l) π) at s = 1. Then, using Selberg’s orthogonality once more in (39), we get∑
p≤X

aπ′(p)|aAd Π(p)|2

p
= 2

∑
(i,j,l)∈S

mi,j,l log logX +O(1), (40)

where the implied constant depends only on π and f.
Substituting (34) and (40) into the inequality (31) we then obtain∑

p≤X

ρf (p) (|aSymn π(p)| − 1)

p
≤ −m log logX

2(m+ 2)2
·
[
1 +

2

m

∑
(i,j,l)∈S

mi,j,l

]
+O(1) ≤ − m

2(m+ 2)2
log logX +O(1),

which establishes Proposition 3.2. �

We are now in position to prove the first main result of this paper.

Proof of Theorem 1.1. Our starting point is Lemma 2.1 applied for the function F (n) = |aSymm π(n)| and
the polynomial Q(x) = f(x) ∈ Z[x]. It yields∑

X−X0<n≤X
n≡a (mod q)

|aSymm π(|f(n)|)| � X0

q

∏
p≤X
p-q

(
1− ρf (p)

p

) ∑
n≤X

(n,q)=1

ρf (n)|aSymm(n)|
n

. (41)
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We turn to the sum on the right-hand side. The multiplicative property of the arithmetic function
|aSymm(n)| implies

∑
n≤X

(n,q)=1

ρf (n)|aSymm(n)|
n

≤
∏
p≤X

1 +
∑

1≤k≤ logX
log p

ρf (pk)|aSymm π(pk)|
pk

 . (42)

At the same time, the elementary inequality log(1 + x) ≤ x, true for all x ≥ 0, gives

∑
p≤X

log

1 +
∑

1≤k≤ logX
log p

ρf (pk)|aSymm π(pk)|
pk

 ≤∑
p≤X

∑
1≤k≤ logX

log p

ρf (pk)|aSymm π(pk)|
pk

. (43)

Bounding ρf (pk)|aSymm π(pk)| trivially we see that∑
p≤X

∑
2≤k≤ logX

log p

ρf (pk)|aSymm π(pk)|
pk

≤ (m+ 1) deg f ·
∑
p≤X

∑
2≤k≤ logX

log p

1

pk
�
∑
p≤X

1

p2
� 1, (44)

where the implied constant depends on m, π and f. Substituting (43) and (44) into (42) we get

∑
n≤X

(n,q)=1

ρf (n)|aSymm(n)|
n

� exp

∑
p≤X

logX
log p∑
k=1

ρf (pk)|aSymm π(pk)|
pk

� exp

∑
p≤X

ρf (p)|aSymm π(p)|
p

 . (45)

Using the key estimate proved earlier (Proposition 3.2) together with a well-known result of Erdös [Erd52]:∑
p≤X

ρf (p)

p
= log logX + c(f) + o(1), (46)

(for some constant c(f) depending of f) we obtain∑
p≤X

ρf (p) · |aSymm π(p)|
p

≤
(

1− m

2(m+ 2)2

)
· log logX +O(1). (47)

Hence, combining (45) and (47) we get∑
n≤X

(n,q)=1

ρf (n)|aSymm(n)|
n

� (logX)
1− m

2(m+2)2 . (48)

Finally, we note that equation (46) also implies that∏
p≤X
p-q

(
1− ρf (p)

p

)
� 1

logX
. (49)

Then Theorem 1.1 follows by substituting (48) and (49) into (41).
�

Next, for polynomials f of small degree we explain why the Artin representation σf is automorphic.

Proof of Corollary 1.2. Denote by d the degree of f , and by D its discriminant. Recall that the permutation
representation acting on the roots of f , viewed as a Galois representation, decomposes as the sum of the
trivial representation and another Artin representation σf : Gal(Q/Q)→ GLd−1(C) with the property that
ρf (p) = 1 + σf (Frobp), where Frobp is the usual Frobenius automorphism.

For d ≤ 4 we show that σf is automorphic, i.e., there exists an automorphic representation π′(f) of
GL(d− 1,AQ) with the same L-function as σf . We treat each case separately.

• If d = 2 then, by quadratic reciprocity, ρf (p) = 1 +
(
D
p

)
for all odd primes p (away from D). Since

σf is simply a character, its automorphy is clear.
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• If d = 3 then σf is induced from a character χ : Gal
(
Q/Q(

√
D)
)
→ C×. In this case, the existence

of π′(f) is deduced by automorphic induction from GL(1) to GL(2).
• If d = 4 then it can be seen that σf is the symmetric square of a 2-dimensional Artin representation

τ : Gal(Q/Q)→ GL2(C) with solvable image (see, e.g., Example 2 and 3 in [Kim07]). By the work
of Langlands and Tunnell, the automorphy of τ is known in this case. This, in turn, combined with
the adjoint square lift of Gelbart and Jacquet gives the automorphy of σf .

We also mention that if d = 5 then, by [Kim07] (Example 4), we have that σf is the tensor product
of two Artin representations of degree 2. Provided that these are automorphic (e.g., if they are odd), the
existence of π′(f) follows from the functorial product GL(2)×GL(2) (see [Ram00]). Since even icosahedral
representations are not yet known to be modular, we cannot deduce the automorphy of σf in full generality
for d = 5.

�

Finally, we give a proof of our second main result.

Proof of Theorem 1.3. In contrast with the proof of Theorem 1.1, neither [Nai92] nor [NT98] can be used
here directly, for the sum is over the values of a polynomial in two variables. This is where the sieve methods
developed in Section 2 come into play.

Let πE be the cuspidal automorphic representation associated by modularity to the elliptic curve defined
by the polynomial E(x, y) = y2 − x3 − ax − b with 4a3 + 27b2 6= 0. Then aπE (p) = p + 1 − ρE(p), and the
Hasse-Weil bound gives |ρE(p`)− p` − 1| ≤ 2p`/2 for every integer ` ≥ 1

Also, since Y γ1 ≤ X ≤ Y γ2 and Xα ≤ X0 ≤ X, Y β ≤ Y0 ≤ Y, it is clear that

max{logX, log Y } � min{logX0, log Y0}

with implied constants depending on α, β, γ1 and γ2.
It follows that we can apply Proposition 2.2, which allows us to reduce the problem to showing that

∑
p≤X0Y0

ωE(p) · (aπ(p)− 1)

p
≤ − 1

18
log logX0Y0 +O(1), (50)

where ωE(p) = ρE(p)/p. Appealing to Lemma 3.1 we have∑
p≤X0Y0

ωE(p) · (aπ(p)− 1)

p
≤ − 1

18

∑
p≤X0Y0

ωE(p)|aAdπ(p)|2

p
+

1

2

∑
p≤X0Y0

ωE(p)aAdπ(p)

p
. (51)

Since π is not dihedral, we note that Ad(π) is a cuspidal automorphic representation of GL(3), so by Selberg’s
orthogonality ∑

p≤X0Y0

|aAdπ(p)|2

p
= log logX0Y0 +O(1). (52)

Furthermore, the fact that π satisfies the Ramanujan conjecture implies that |aAdπ(p)| �ε p
ε for some

positive constant (say) ε < 1/100. Using this upper bound together with the inequality |aπE (p)| ≤ 2p1/2 we
get ∑

p≤X0Y0

(1− |aπE (p)|) · |aAdπ(p)|2

p2
�
∑
p

p1/2+2ε

p2
= O(1). (53)

On the other hand L(s, πE ×Adπ) is entire, since πE is not isomorphic to Adπ. As a consequence∑
p≤X0Y0

ωE(p)aAdπ(p)

p
=

∑
p≤X0Y0

aAdπ(p)

p
+

∑
p≤X0Y0

(1− aπE (p))aAdπ(p)

p2
= O(1). (54)

Combining the estimates (51) through (54) establishes (50), and therefore concludes the proof of Theorem 1.3.
�
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