Deter minants of Distance M atrices of Trees

Valerie Tillia

ABSTRACT. A formula for the determinant of the @diste matrix for a tree as a function
of the number of its vertices, independent of tinecsure of the tree, has been proven by
several mathematicians. We explore the detdithe proof by Weigen Yan and
Yeong-NanYeh, look at the history of the topic, @ee the theorem in action by
way of examples.
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2. INTRODUCTION

Graph theory is the mathematical study of netwofkese networks are represented
by nodes (vertices) and connections (edges). Ty $ras many applications, and it
branches to many other disciplines of mathematassjlting in mathematicians from
many different mathematical backgrounds havingighbkH results in the topic.

In the 1970’s, Ronald L. Graham, the man respoeaddy Graham’s Number,
published several results in graph theory. Beyaadvork in graph theory, Graham
actually began some new areas of study such ag-esmss analysis in scheduling theory,
and the Grahams Scan in computational geometryo@of his extensive work in
applied mathematics, Graham was at one point #sgent of the International Jugglers
Association, a circus performer, and Chief Scie¢atisCalifornia Institute for
Telecommunication and Information Technology, amatked at Bell System Tech Labs
[8]. Also working at Bell was Dr. H.O. Pollak, withhom Graham worked with on
several graph theory results. In their paper ti@edthe Addressing Problem for Loop
Switching [4], graph theory is used in the studyrahsmitting messages and calls
efficiently at Bell System Tech. It is in this amgltion that the need for the determinant
of a distance matrix of a tree is discovered, and¢n using rather complicated linear
algebra.

In 2005, Weigen Yan and Yeong-Nan Yeh publishedpte Proof of Graham and
Pollak’s Theorem [6]. The theorem they are refgrtmis the formula for the
determinant of a distance matrix for a tree, amdr tproof is the basis for the work done
in this paper.

In Yan and Yeh'’s proof of the formula, an interegtconnection is made to Charles
Dodgson (27 January 1832 — 14 January 1898). Mmremonly known by his pen name
Lewis Carroll, author of the beloved classic AlineNonderland, Dodgson was a
recreational mathematician. Among other thingsjéneeloped a new way of evaluating
determinants of matrices called Condensation, @ thkthod was based on a theorem
that is known as the Desnanot-Jacobi Identity@#nsequently, this identity is
sometimes referred to as Dodgson’s determinantatiah rule, as was done by Yan and
Yeh. This plays a large role in the proof of themtheorem of this paper.

We will begin with a review of graph theory and timear algebra that applies to
the focus of this topic. We shall then explore piheof of the main theorem and see some
examples of the theorem in action. The proof ofthe®mrem depends on Dodgson’s
determinant evaluation rule, so we will take a krigam the proof of the main theorem
to see the proof of this identity, therein compigtthe proof of the result.
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3. TREES AND DETERMINANTS

Graph theory is the study of networks consistihgestices and edges. A graph is
a collection of vertices, edges, and the connestimiween them. A graph can be
connected, or disconnected (see Figure )1

N

Disconnected Connected

Figurel

Some graphs can halaops or multi-edges, (see Figure 2) butample graph is restricted

to exclude these types of edges.

Loops and Multi-edges

Figure2

Two vertices in a graph are said todolpacent if they are connected by a at least one
edge. Apath is a series of connections in a graph beginnirtg ivertex and ending
with another vertex, with no repeated edges oiicestin the sequence.dcleis a path
that ends with the same vertex it began with.

A treeis a connected graph with no cycles. (See Figuiiéh8 vertices at the ends
of the tree’s branches are calledves. The leaves are circled in Figure 3. A treenof
vertices hasn—1 edges [6].

Atree on 9 vertices

Figure3

Trees are useful in graph theory since any condagpt@ph has an embedded tree called
the spanning tree, which uses all the vertices of the graph. Theeeadot of nice results
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about trees, which can make the work easier ifaamerestrict attention to the spanning
tree of the graph.

Thedistance from one vertex to another in a graph is the lergtthe shortest
path. The way we think about length of a path esrtbmber of “steps” between each
vertex. It is the same to count the number of edbgéseen the vertices in such a shortest
path. Thedistance matrix of a graph om vertices is amxn matrix whose i,'f entry is
the distance between tH&and |" vertices [6]. Such a matrix is by definition symtnie
with whole number entries. For example, the distamatrix of the tree in figure 3 would
be made by naming the vertices...,v,and forming the matrix. Depending on how the

tree is labeled, the matrix will look different, thwill have the same determinant. The
entries will all be the same but will be permutkbtighout the matrix by a series of row
and column switches. For example, if row 2 ande3savapped, then we must also swap
column 2 and 3. Each swap results in negationeftidterminant, but since all our swaps
come in pairs, our determinant will remain unchahgk Figure 4, a labeling is assigned
and the resulting distance matrix is given.

_vl VZ V3 vV A VS Vs V7 Vg Vg_
v|01 4 3 2 3 3 4 4
wifl 0 3 2 1 2 2 3 3
w4 301 2 3 3 4 4
A.Iabe_lingonthetr_ee v4 3 2 1 0 1 2 2 3 3
with distance matrix
w2 1 21 01 1 2 2
vl3 2 3 2 1 0 2 3 3
v»[3 2 3 2 1 2 01 2
wl4 3 4 3 2 3 1 0 2
vol4 3 4 3 2 32 2 0]
Figure4

In linear algebra, deteramts of square matrices can be found by a method
called co-factor expansion. This method utilizes#on called the minor of an element.
The minor of an elemerd; is defined as the sub-matrix left after thedw and

j™ column are deleted (crossed out). This is denased ;. The cofactor element & is
denoted byC, and is equal tq-1)""' |M,|.

In cofactor expansion, you may piclk aow or column you like to expand along.
It is beneficial and eases computation time to pickw or column rich with zeros. The
determinant of the matrix is then equal to the sdimach of the entries of the row
multiplied by their respective cofactor element [8]

The main theorem gives us a formula for the detgant of a distance matrix of a
tree. This formula is a function of the number eftices, and is otherwise completely
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independent of the structure of the tree. Fora dren vertices, the determinant will be
-(n-1)(-2)">.

Therefore, according to the theorem, the distanaices of the following two
trees should have the same determinant. Let usasfgctor expansion to see.

v, vy, V3 Y vV V3 Yy
»n|0 1 2 3 v|i0 1 1 1
v[1 0 1 2 »nil 0 2 2
w2 1 01 vl 2 0 2
v,{3 21 0 v{l1 2 2 0

Figure5

These are clearly different matrices—thdriman the left has 3 as an entry twice
while the matrix on the right does not. Let us coteghe determinants using cofactor
expansion.

11 10 10
-12 0 1+22 1 1-32 1[0
31 3 2 3 2
=—(-1-(-3)+22)+ {2+ I-F ¢+ )
—6+-6
=-12
12 10 10
-1 0 2+|1 2 2-|1 2
12 12 12
~(-4-2(-2)+ 2 9)+(-4-( 4
—4-4-4
=-12

Although the previous cd#tions were not very tedious, to carry out thecpss
for the matrix in figure 4 would be nightmarish.€eTfirst step would be the sum of 8
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determinants of 8x8 matrices. The next step woeldfpto 8 summands of determinants
of 7x7 matrices For matrices this large, therenigléernative way (besides technology)
to find the determinant. Dodgson’s method for eatihg determinants is called
Condensation, because it “condenses” a matrixtstegtep until the determinant is left at
the end. The process can be outlined by the folgwieps:

1)

2)

3)

4)

5)

Use elementary row operations so that no zerosr@scan “interior”
all cee a:ln

entry. i [zero- free]

4 v A

Compute the determinant of each minor of 4 adjatsnts to form a new
n—1xn-1 matrix:

8, a5
a22 a23

a; A
a21 a22

‘%—Z,n—l an—ln—A‘ ‘an—ln—l an—]n
Qnz  Gnr| |Bn1 G |

Repeat step 2) for the—1xn—1 matrix, except now divide the new entry
by the corresponding interior entry of thesn. This division is the reason
why we did not want zeros in the interior.

If a zero appears in the interior of any subsequattix, then repeat step
3. In general, for the—txn—t matrix obtained by the 2x2 determinants

of the n—(t-1)xn-(t-1) matrix, divide each entry by the interior of the

n-(t-2)xn-(t-2) matrix. Repeat until a single value is reached.

If a zero occurs in the interior of any resultargtrx, the process cannot
continue. Dodgson did develop a solution to thabpem but it is itself
tedious. It will be omitted in this discussion, lioit the curious reader, the
explanation of the method can be found in the lartiCondensation of
Determinants, Being a New and Brief Method for Catimg their
Arithmetical Values [4].

Dodgson developed this method in response to itie ¢tbnsumption that ensues
when trying to apply cofactor expansion to a larggrix, such as our 9x9 matrix for
instance.[4] Although the Condensation method waatuire around 9 steps (or more if
zeros occur), the method of cofactor expansionccoeduire up t8!= 362,880 steps.
Condensation is overall a good resort for finding tleterminant of very large matrices.
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Below is the calculation of the determinant of thatrix from Figure 5 using
Condensation.

w N P O
N b O -
= O L N
O P N W

Since zeros are in the interior of this matrix, west perform elementary row operations
on it to remedy this problem. We arrive at the matr

P W N W
= O W O

g w o
wWw N W

The first step of condensation yields:

-3 -7 -1
3 5 3
-1 -7 -3

The next step requires us to consult the interi@uo starting matrix. After
condensing and dividing by the appropriate integiotry, we arrive at:

[(—15— (-21) /3 (-2 ¢ 5) /ZJ_{Z _8}

(-21-(-5)/2 (-15 ¢21) /3 |8 2

Finally, we take step 3 again to obtain with a dateant of 4_564= -12.

Now using the formula given by our main theorem,ols&in
-(4-1) (-2 =-3U=- 1z

The theorem Dodgson used to develop this methkdasn as the Desnanot-
Jacobi Adjoint Matrix Theorem, but is also refertecas Dodgson’s Determinant
Evaluation Rule,

det(A)det@, )= detd, )de, 3 def(, )deX(,
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where A is amxn matrix, A, is the minor obtained by deleting both the finstl dast
rows and columns4, is the minor obtained by deleting tierow and ' column [6].
This identity will come in very handy when provitige main theorem.
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4. PROOF OF THE MAIN THEOREM

Theorem. (Graham PollackpupposeT is a tree with vertex s&t(T) ={v, V,,...,V,} .
Let D= (di’j )nxn be thenxn distance matrix off , whered, ; is the distance between

the verticesy, and v; .

Then the determinant of the matrix is
detD)=-n-1)E 2)2

which is independent of the structureTof6].

Proof. (by induction om)

Base casen=3

Figure5

There is only one tree on 3 vertices (see Figure 5)

The distance matrix for this tree is:

O

1
N P O
R O R
O R N

For the sake of simplicity in calculations, fronté®n out we will denote the
determinant ofD as|D|.

Using cofactor expansion along the first row, welfi

1 1 1
|D|=O‘2 j—l‘z :1+z‘2 T:0+2+2:4

Using the formula in the hypothesis, we have that
D|=-(3-1)2)* =~ (2)¢ 2)= ¢

10



Tillia

Induction Step: Suppose the hypothesis holds éaston less than vertices.

Suppose T is a tree an= 4 vertices. Every tree has a least two leaves, sbtiuo leaves
of T and call themy, andv, .

Leaves have unique neighbors, so call the unigighbers ofy, andv,, v, andv,
respectively. So the distance betweeandyv, is 1, and so is the distance between
andv,.

Consider the distance matrix of T:

Vl V2 Vn
[0 1 ]
v,|1 O ?

? 01
Al 1 O]

Now, let d, denote the ith column of D. Note that any entrylj is the distance of some
vertex tov,, while any entry ind, is the distance of some vertexwo Sincey, is a
pendant adjacent te,, any vertex of distance from v, will be distancet +1 from v, .
Therefore the entrgl, = d,, +1 for all 2<i<n-2. Similar for the columnsl__, andd, .

Keeping this in mind, we can compute the following:

(d,-d,) =(-1 1 1 .. }
(d,-d,) =(1 1 .. 1 -3

n

Recall that adding multiples of columns to othduoms does not change the
determinant of the matrix.

So use the columfd, -d,)" +(d,-d,.,)’=(-2 0 .. 0 32 in place of the column
d, and rename it, .

Therefore the matrix below has the same determiambt but is easier to compute:

11
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2 d, d,
0
0 ;
L 2 dn2 dn,n—l 0 i

Use cofactor expansion along the first column tmpote the determinant,

n+l

|=-2]Df[+2(~3

Dy

where D} is the matrix obtained by deleting tfferow and {' column of D.

Note thaD; is the distance matrix of —v,, which is a tree on less thanvertices, so
the hypothesis holds for it.

So we have that

n+l

|D| =-2|D}|+2(-1)"|D}
2(-(n-2(-97)+ 49"

To get another expression for the determinant a®turn to the following lemma.

Dy

1)

Lemma. (Desnanot-JacobiMij is a matrix obtained by deleting therow and |’

column of annxn matrix M , and M ','f is a matrix obtained by deleting tiednd K"

rows and [ and I" rows of a matrixM , then

M{|Mm;n

=[mafm;

_‘Mi

M/

Pr oof.

Form the cofactor matrix €, whose entry in thé"irow and " column is(—l)i+j ‘M ;‘

where M} is as defined above. Then

12
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My M7 My
M€ =
(D" M2 LY
my,om, .omy |
: : My - : .
Consider the matriM =| g and the dot product of th® fow of
My My e My,

M and the ' row of M€:

M|+ !

MY . e

)

<m1 m, .. mn>°<(_1)i+1

which simplifies to:

() (my My —m MY+ L+ 1) M)

)

Note that using the cofactor expansion formulagite i row of M would yield the
same expression for the determinantvbf

Also, note the expression

D= (my M) —mo MY+ cm v
with j #i is the determinant of the matrix in which rovg replaced with a copy of row
j. Such a matrix has determinant 0, so we have that

it i| : oy ne |M| if i =]
Define a new matrixM * . This matrix has the sam& and ' column asM € but for
2<i,j<n-1,
0 ifi#]
m*, =<
Yol ifi=

13
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My 0 0 15t my]

-m3 1 0 (-1*2M!
M* = . :
: 0 1 :
()™Ml 0 o0 My

Note that by construction d¥1 *, the matrix producMM * gives

M| m, m; .. O]
0 m . 0
MM*=| 0 : . . 0

0 m, m; .. [M[]

Using cofactor expansion along the first columnvi¥l * , the determinant oMM * is
given by

(MM #|= M (M ),

Then, expanding along the last column\®i *; this expression simplifies to:
MM = [ [ [m2]
Since|MM *| =|M||M*|, we have

M *| =|M]|Mjn )

Now compute the determinant ™ * a second way. Expanding along the first row, we
get:

M *| =M gM* 3+ ()™ ()™ dm | v
=M | =M - ()™ M g

To simplify this, continue with cofactor expansiexploiting the many zeros in the first
and last rows, to obtai‘m/I *ﬂ =‘M: and‘M = (-1)"(-1)™ MY, so that

14
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: 3)

(M| = M v =i

Equating the two expressions (2) and (3) we havW0*| we have the statement of the

_‘Mi

lemma.

Returning to the proof of the main theorem, we made of the identity. By the lemma,
we have that

D"|-|DY|D1.

|D||D37

=[os

By the definition of the distance matrix ®f, =|D}|, sinceT is symmetric.

Dy
Recalling thatD,”, D}, and D! are the distance matrices Bf-v,-v_, T -V;, and
T —v, respectively, we can apply the induction hypothesid obtain:

[o]l>m
which, upon substitution, yields

D/(~(n-3)(-2™) =[~(n-2(-2""]

We now have, in (1) and (4), a system of two e@uatin two unknowns:

Bl(-(n=3)(-2)")=[ ~(n-2(-2"]
D|= —2(—(n— 2)(_2)n-3) + -9

Dl

it

Dy

Dy

2
~[o3f’. (4)

2 2

Dl

Dy

For simplicity, letx =|D;'|. Simplifying the above equations and using thehoeof

substitution to eliminate the variadl

, we obtain:

x> +(n-3)2°x~-(n-2) 2"°=
This is a quadratic, and factors into

(x—2”‘3)(x+(n—2) 2“‘3) =0
which has solutions

x=2"° or x=2"*(2-n).

15
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Using the solutionx = 2"*(2-n) in either of the original equations gives that the
determinant of any distance matrix is 0. This eadly a contradiction to the base case of
the induction proof. So our solution must ke 2"°. We now have that

D= ~2(~(n-2)(-2"")+ 44" 2
~tn-1)(-2)" 0

Remark: As a corollary, we have th#ﬂ)”:Z”"" wherei, j are leaves vertices df.

16
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5. CONCLUSION

The need to find the determinant of a distanceixat a tree arose in an
application problem involving telephone call rogtit was discovered by Ron Graham
in his work on this application that the determinaia distance matrix of a tree is in fact
independent of the structure of the tree itselfiepends only upon the number of vertices
in the tree, and can be expressed by a simple farmibis result is so simple yet so
intriguing, that it has led to many different preaif the formula over the last few
decades. Through examples we explored the methoconalensation and learned co-
factor expansion, since these were needed to uaddrthe proof of the formula. We
also experienced the fascinating formula at wordifferent trees of the same number of
vertices. We then looked in detail at the prookegiby Weigen Yan and Yeong-Nan
Yeh.

17
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6. QUESTIONS

Although it is not immediately or intuitively clearhy the determinant has no
regard for the tree’s structure, it may help tatethat a tree oh vertices always has
n-ledges. Edges are directly related to distancetr@ntermn—21appears in the
formula.

In my discussions with others and research inraheles, still nowhere have |
found a satisfying intuitive explanation for whyetteterminant is expressed by such a
formula. The formula-(n—1)(-2)"* seems to be a counting problem. Ignoring sign, it
could be counting the number of ways to first packedge in the tree, then whether to
include or exclude each remaining edge. The sighetleterminant depends on the
number of vertices in the tree. An even numberearfiges will yield a negative
determinant while an odd number gives a positiv@vtdoes the determinant relate
geometrically to the number of edges in a tree?

18
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