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Landslide inventory maps are necessary for assessing landslide hazards and addressing the role slope stability

plays in landscape evolution over geologic timescales. However, landslide inventory maps produced with

traditional methods — aerial photograph interpretation, topographic map analysis, and field inspection — are

often subjective and incomplete. The increasing availability of high-resolution topographic data acquired via

airborne Light Detection and Ranging (LiDAR) over broad swaths of terrain invites new, automated landslide

mapping procedures. We present two methods of spectral analysis that utilize LiDAR-derived digital elevation

models of the Puget Sound lowlands, Washington, and the Tualatin Mountains, Oregon, to quantify and

automatically map the topographic signatures of deep-seated landslides. Power spectra produced using the

two-dimensional discrete Fourier transform and the two-dimensional continuous wavelet transform identify

the characteristic spatial frequencies of deep-seated landslide morphologic features such as hummocky

topography, scarps, and displaced blocks of material. Spatial patterns in the amount of spectral power

concentrated in these characteristic frequency bands highlight past slope instabilities and allow the delineation

of landslide terrain. When calibrated by comparison with detailed, independently compiled landslide

inventory maps, our algorithms correctly classify an average of 82% of the terrain in our five study areas.

Spectral analysis also allows the creation of dominant wavelength maps, which prove useful in analyzing

meter-scale topographic expressions of landslide mechanics, past landslide activity, and landslide-modifying

geomorphic processes. These results suggest that our automated landslide mapping methods can create

accurate landslide maps and serve as effective, objective, and efficient tools for digital terrain analysis.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Creating detailed landslide inventory maps is a first step in

assessing landslide hazards for policy-making purposes (Wieczorek,

1984), as well as in answering scientific questions involving spatial

and temporal patterns of mass movement. Traditional landslide

mapping methods include scanning topographic maps for opposing

and irregular contours, interpreting aerial photographs using a

stereoscope, and directly observing landslide morphology in the

field (Nilsen and Brabb, 1977; Nilsen et al., 1979; Cruden and Varnes,

1996; Guzzetti et al., 1999;Wills andMcCrink, 2002; Galli et al., 2008).

However, each of these methods has limitations that may reduce the

scope and accuracy of the resulting landslide map (Malamud et al.,

2004a; Roering et al., 2005). Topographic maps often lack the

resolution required to map small or topographically subtle landslides,

while vegetation often obscures morphologic features indicative of

landslides in aerial photographs. Detailedfieldmapping is time intensive

and difficult to carry out in rugged, forested terrain (Van Den Eeckhaut

et al., 2005). Furthermore, landslides located using any method must be

translated to a paper or digital map, which introduces additional errors

(Malamud et al., 2004a). For these reasons, landslide inventories

prepared by traditional means are often incomplete (Malamud et al.,

2004b), and maps of a given area produced by different workers often

differ dramatically (Guzzetti et al., 2000; Wills andMcCrink, 2002; Galli

et al., 2008). Use of incomplete or uncertain landslide inventories has

clear implications for hazard assessment and may also skew the

landslide distribution statistics used to estimate sediment production

and transport (Hovius et al., 2000; Malamud et al., 2004a).

The increasing availability of high-resolution digital elevation

models (DEMs) derived from airborne Light Detection and Ranging

(LiDAR) measurements provides an additional tool for analyzing the

geomorphic expression of deep-seated landslides over broad swaths

of terrain. Airborne LiDAR can pierce vegetative cover and, with

processing, reveal sub meter-scale features of the ground surface in

many regions (Slatton et al., 2007). Many recent mapping efforts have

taken advantage of LiDAR-derived DEMs to map landslides in forested

terrain with improved results compared to traditional methods
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(Haugerud et al., 2003; Schulz, 2004, 2005, 2007; Van Den Eeckhaut

et al., 2007a). Still, experts often disagree about which topographic

features indicate landslides in a given LiDAR data set, and landslide

mapping remains somewhat subjective (Guzzetti et al., 2000; Van

Den Eeckhaut et al., 2005, 2007a).

An advantage of the high resolution of LiDAR-derived DEMs is that

it allows more objective and quantitative analysis of fine-scale land

surface features associated with a host of geomorphic processes,

including landsliding. Several recent studies have illustrated how

visual and statistical analyses of landslide topography can highlight

patterns of surface deformation at specific sites (McKean and Roering,

2004; Chadwick et al., 2005; Glenn et al., 2006; Van Den Eeckhaut

et al., 2007b). However, few studies have utilized large, high-

resolution data sets to quantitatively investigate broad spatial

patterns of landsliding (Hovius et al., 1997; Roering et al., 2005).

Here, we aim to develop new methodologies that utilize the

Fourier and continuous wavelet transforms to automatically extract

the topographic signatures of past deep-seated landslides from high-

resolution topographic data. Specifically, variations in spectral power

within spatial frequency bands characteristic of deep-seated land-

slides allow us to efficiently produce accurate kilometer-scale, deep-

seated landslide maps. We also generate dominant wavelength maps

and demonstrate their effectiveness in analyzing meter-scale topo-

graphic expressions of landslide mechanics, past landslide activity,

and landslide-modifying geomorphic processes such as soil creep.

2. Study areas

We selected two main study areas — the Tualatin Mountains,

Oregon, and the Puget Sound lowlands, Washington — based on the

availability of high-resolution, LiDAR-derived DEMs and detailed,

independently compiled landslide inventory maps. Figs. 1–3 show

LiDAR-derived hillshademaps of the study areas, whichwe divide into

five smaller sections for analysis: the Dixie Mountain quadrangle

(DMQ) and northwest Dixie Mountain quadrangle (NWD), Oregon

(Fig. 1), marine Thurston County (MTC) and the Carlyon Beach

Peninsula (CBP), Washington (Fig. 2), and Seattle (SEA), Washington

(Fig. 3). Although the independently compiled inventory maps

represent workers’ interpretations of landslide features and are

therefore not completely objective, they are the most current maps

of our study areas and provide an outside standard with which we

compare our algorithm performance. Portions of the study areas

contain debris flow deposits and shallow landslides, but we focus

specifically on the morphologic signatures of deep-seated landslide

processes in this study.

2.1. Tualatin Mountains, Oregon

The Dixie Mountain quadrangle contains the NW–SE trending

Tualatin Mountains, which drop 300 m or more in elevation to the

Columbia River floodplain in the northeastern part of the quadrangle.

Bedrock consists primarily of deeply weathered Columbia River flood

basalts, which unconformably overlie weathered marine sandstone

and siltstone of the Scappoose Formation (Trimble, 1963). An ~10–

30 m blanket of loess accumulated during the late Pleistocene and is

preserved on many of the high, low-angle ridges (Trimble, 1963;

Madin and Niewendorp, 2008). This loess-mantled surface appears

smooth in the LiDAR-derived hillshade map and is especially well

preserved along the spine of the Tualatin Mountains (along the SW

edge of Fig. 1). Large landslide complexes occupy most of the

northeastern slopes of the Tualatin Mountains where rivers have cut

through the basalt and exposed the underlying Scappoose Formation

(Trimble, 1963). Primary failure planes of the landslide complexes

typically occur inweak layers of the Scappoose Formation at least tens

of meters below the present surface (Madin and Niewendorp, 2008).

In the LiDAR-derived hillshade map (Fig. 1), surfaces of these deep-

seated landslides appear rough with many scarps, blocks undergoing

tensile failure, and flow-like features clearly visible.

We acquired a LiDAR-derivedDEMwith 3-ft (0.9-m)point spacingof

the Dixie Mountain quadrangle from the Oregon LiDAR Consortium

(http://www.oregongeology.com/sub/projects/olc/). Madin and Nie-

wendorp (2008) used field observations and interpretation of geo-

morphic features on a LiDAR-derived DEM to produce both a bedrock

map and a surface deposit map of the quadrangle. LiDAR-derived DEMs

were not available for previous mapping of the surrounding areas

(Beeson et al., 1989, 1991), and previous maps included only bedrock

units or amixof bedrockunits and surfacedeposits. In their surfacemap,

Madin and Niewendorp (2008) classify landslide deposits based on

style, age, and composition into five units: flow and fan deposits,

surficial landslides, bedrock landslides, the Wildwood landslide com-

plex, and the Dutch Canyon landslide complex. In our analysis of the

DMQ and NWD study areas (Fig. 1), we use only deep-seated landslide

units includingbedrock landslides and theWildwoodandDutchCanyon

landslide complexes, which cover 53% of DMQ and 80% of NWD.

2.2. Puget Sound lowlands, Washington

The stratigraphy and surface morphology of most of the southern

Puget Sound lowlands reflect the most recent interglacial–glacial cycle

(Tubbs, 1974, 1975; Galster and Laprade, 1991; Haugerud et al., 2003).

Nonglacial clay, silt, and sand deposited during the Olympia interglacial

underlie glacial sediments of the Vashon stade of the Fraser glaciation

(Armstrong et al., 1965; Booth, 1987). These loosely consolidated

sediments are commonly exposed in 50-m or higher bluffs that truncate

a glacially sculpted upland surface (Galster and Laprade, 1991; Schulz,

2004, 2007). In the LiDAR-derived hillshade maps (Figs. 2 and 3), this

upland surface appears broadly undulating with many elongate, N–S

trending drumlins. Following glaciation, isostatic rebound elevated the

glacially sculpted surface while eustatic sea level and lake levels rose

(Booth, 1987), undercutting adjacent slopes (Tubbs, 1974, 1975; Schulz,

2004, 2005, 2007). Coastal erosion, accomplished largely by deep-seated

landsliding, resulted. Topographic features of these bluff-forming land-

slides, such as headscarps, slumped blocks, and hummocky topography,

are visible both in the field and in the LiDAR-derived topographic data

(Figs. 2 and 3) throughout much of the coastal Puget Sound lowlands.

High-resolution DEMs with 6-ft (1.8-m) point spacing for the

Puget Sound lowlands are available from the Puget Sound LiDAR

Consortium (http://pugetsoundlidar.ess.washington.edu/). As part of

an ongoing landslide hazard project by the Geology and Earth

Resources division of the Washington State Department of Natural

Resources (WA DNR), M. Polenz (WA DNR, personal communication,

2008) recently compiled a landslide inventory for the marine shores

of Thurston County using LiDAR-derived DEMs coupled with aerial

photographs and field reconnaissance. The inventory includes both

deep-seated and surficial landslides with brief descriptions of more

than 800 landslide polygons. In our analysis of the MTC and CBP study

areas (Fig. 2), we use only the large, deep-seated landslides, which

cover 4% of MTC and 26% of CBP. Schulz (2004, 2005, 2007) created a

detailed deep-seated landslide map for the city of Seattle by using

LiDAR-derived DEMs and field observations to map headscarps,

landslide bodies, and denuded slopes associated with ancient deep-

seated landslides. In our analysis of the SEA study area (Fig. 3), we use

all three of these features, which cover 15% of SEA.

3. Methods

We utilize two common signal processing techniques — the two-

dimensional discrete Fourier transform (2D DFT) and the two-

dimensional continuous wavelet transform (2D CWT) — to quantify

the topographic expressions of deep-seated landslides and to

objectively map their locations in our study areas. Fourier analysis

has a rich history in the earth sciences and has been used to quantify
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various topographic patterns and landscape-scaling properties (Ray-

ner, 1972; Hanley, 1977; Harrison and Lo, 1996; Perron et al., 2008).

Wavelet analysis has recently gained popularity among those studying

earth and planetary surface morphology and has successfully been

implemented in studies that, for example, analyze polar topography

(Malamud and Turcotte, 2001), quantify salmon nesting patterns

(McKean et al., 2008), extract channel networks (Lashermes et al.,

2007), and analyze morphotectonic lineaments (Jordan and Schott,

2005). The 2D DFT transforms discretely sampled data from the

spatial domain to the frequency domain, providing information about

Fig. 1. LiDAR-derived hillshade map of the Dixie Mountain quadrangle, Oregon (DMQ) study area with deep-seated landslides independently mapped by Madin and Niewendorp

(2008) shown in black, hatched pattern. The black rectangle in the NW corner outlines the Northwest Dixie Mountain quadrangle (NWD) study area, which we show in detail to

illustrate our methods and results in Figs. 5 and 8.
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Fig. 2. LiDAR-derived hillshade map of the marine Thurston County, Washington (MTC) study areawith deep-seated landslides independently mapped by M. Polenz (WA DNR, personal communication, 2008) shown in black, hatched pattern.

The black rectangle in the north-central part of the figure outlines the Carlyon Beach Peninsula (CBP) study area, which we show in detail to illustrate our methods and results in Figs. 6, 9, and 12.
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how the amplitude of topographic features is distributed over a

range of spatial frequencies. The 2D CWT transforms spatial data

into position-frequency space, providing information about how

amplitude is distributed over spatial frequency at each position in

the data. We use both these transforms to determine characteristic

wavelengths of landslide features and then to map where the

signatures of these features are strongest. Throughout this paper

we use spatial scale and wavelength interchangeably, and we refer

to the inverse of a feature's wavelength as its spatial frequency. To

assess the accuracy of our landslide mapping algorithms, we

evaluate how well the algorithm outputs match the independently

mapped deep-seated landslides in each study area. These inde-

pendently compiled maps are somewhat subjective as are all

landslide inventory maps. However, they were created using

previously unavailable high-resolution DEMs in addition to tradi-

tional methods and therefore are the most accurate deep-seated

landslide maps available for our study areas.

We coded and executed all computations on a desktop computer

usingMatlabVersion7.4.0 (TheMathWorks, Inc.), so themethods should

be accessible to all interested parties. Copies of our algorithms are

available at http://www.uoregon.edu/~jroering/specmaptools.html.

3.1. 2D DFT

Two-dimensional Fourier analysis of topography provides quanti-

tative information about the amplitude, orientation, and shape of

periodic and quasiperiodic features over a range of spatial frequencies

(Rayner, 1972; Hanley, 1977; Harrison and Lo, 1996; Perron et al.,

2008). The 2D DFT of a data set z(x,y) with Nx×Ny evenly spaced

nodes is (Priestley, 1981; Perron et al., 2008)

Z kx; ky

� �

=
X

Nx −1

m=0

X

Ny −1

n=0

z mΔx;nΔyð Þe
−2πi

kxm
Nx

+
kyn

Ny

� �

ð1Þ

where kx and ky are wavenumbers in the x- and y-directions, Δx and Δy

are grid spacings in the x- and y-directions, andm and n are indices in z.

A common way of estimating the power spectrum of Z is the DFT

periodogram,

VDFT =
1

N2
xN

2
y

jZðkx; kyÞ j
2

ð2Þ

which has units of amplitude squared, and when summed over all

wavenumbers is equal to the variance of z by Parseval's theorem. The DFT

periodogram produces a 2D array of values that describes the amplitudes

of the frequencycomponents of z. For thepurposesof automated landslide

mapping, Eq. (2) therefore provides a measure of the amplitude of the

topographic features in a DEM, such as hummocks and slumped blocks, at

particular wavelengths and orientations.

3.2. 2D CWT

The generalized 2D CWT of z(x,y) at wavelet scale parameter s and

location (a,b) is (Kumar and Foufoula-Georgiou, 1994, 1997; Addison,

2002)

C s; a; bð Þ =
1

s

Z

∞

−∞

Z

∞

−∞

z x; yð Þψ
x − a

s
;

y − b

s

� �

dxdy ð3Þ

whereψ represents awavelet family. The 2DCWT is a convolution of z and

ψ, and thus thewavelet coefficientC(s,a,b) provides ameasure of howwell

thewaveletψmatches the data z at each node.When s is large,ψ is spread

out and takes into account long wavelength features of z; when s is small,

ψ is more localized in space and sensitive to fine-scale features of z. We

follow the convention of defining the wavelength or equivalent spatial

scale ofψ as the inverse of its band-pass frequency (Kumar and Foufoula-

Georgiou, 1997; Torrence and Compo, 1998), as illustrated in Fig. 4.

Because its shape resembles that of a landslide hummock, we use

the 2D Mexican hat wavelet, described by the following equation and

illustrated in Fig. 4, for our analyses:

ψ x; yð Þ = 2− x
2
− y

2
� �

e
−

1
2
x2 + y2ð Þ ð4Þ

TheMexicanhat is proportional to thesecondderivativeof aGaussian

envelope and has a wavelength of 2πs/(5/2)1/2 times the grid spacing

(Torrence and Compo, 1998). Convolving the 2D Mexican hat wavelet

with a topographic data set therefore precisely maps features of specific

wavelengths and amplitudes, including characteristic landslide features.

The 2D CWT can also be condensed into a power spectrum by

computing its variance over Na×Nb nodes at each wavelet scale

(Percival, 1995):

VCWT sð Þ =
1

2NaNb

X

a

X

b

jC s; a; bð Þ j
2

ð5Þ

Similar to a Fourier power spectrum, Eq. (5) provides a general

measure of how the amplitude of features changes with frequency

over an entire data set. However, as shown for the 2D Mexican hat

wavelet in Fig. 4, awavelet of a given scale typically contains a range of

frequencies on either side of its main band-pass frequency. Analyzing

a single wavelet scale with the continuous wavelet transform is

therefore sensitive to a range of frequencies, while the discrete Fourier

transform analyzes individual frequencies separately. This has the

effect of smoothing the peaks in a wavelet power spectrum compared

to its Fourier counterpart (Torrence and Compo, 1998).

3.3. Fourier and wavelet spectra

To determine the characteristic wavelengths of deep-seated

landslide features in each study area, we first select representative

Fig. 4. (A) Two-dimensional Mexican hat wavelet (s=1), and (B) its Fourier transform. In

(B), radial frequency increases, and wavelength decreases, with distance from the center of

the square array. The ring-shaped peak in (B) indicates the dominant frequency of the

Mexican hat wavelet, which is the inverse of its wavelength or equivalent spatial scale. Note

that in (B) theMexican hat is spread out and contains additional frequencies on either side of

its main frequency.

Fig. 3. (A) LiDAR-derived hillshade map of the Seattle, Washington (SEA) study area, with deep-seated landslides independently mapped by Schulz (2004, 2005, 2007) shown in

black, hatched pattern. Boxes (B) and (C) indicate the patches of unfailed and failed terrain, respectively, used to compute the power spectra described in Section 3.3 and shown in

Fig. 7 for the SEA study area.
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patches of mapped deep-seated landslides and unfailed terrain. In

Seattle, we use a portion of the Riverview landslide and the glacially

sculpted upland surface of Calvary Cemetery as representative patches

(Fig. 3B and C). For the DixieMountain quadrangle, we use a section of

the Dutch Canyon landslide complex and a nearby smooth, loess-

mantled surface (Fig. 5). For marine Thurston county, we use the

historically active Carlyon Beach landslide and the neighboring

glacially sculpted upland surface (Fig. 6).

Next, we normalize each patch of terrain to have unit variance and

generate Fourier and wavelet power spectra using Eqs. (2) and (5),

respectively (Fig. 7A–C, G–I). For easier visualization, we condense the

2D array produced by Eq. (2) to a 1D power spectrum by plotting VDFT

against radial frequency (fx
2+ fy

2)1/2. The spectra all show spectral

power decreasing with spatial frequency, but the spectra tend to

diverge over specific ranges of frequencies. In the DFT-generated

spectra, unfailed terrain tends to have higher spectral power at high

frequencies, and deep-seated landslides tend to have higher spectral

power at intermediate frequencies. In the CWT-generated spectra,

both types of terrain have similar spectral power at low and high

frequencies, but deep-seated landslides tend to have higher spectral

power at intermediate frequencies. These patterns indicate that deep-

seated landsliding in our study areas tends to transfer spectral power

from low and high frequencies to intermediate frequencies. Mechan-

isms that concentrate spectral power include failure of coherent

blocks of material separated by scarps in the upper portion of the

landslides and folding from compressive stress in the lower portions.

To more clearly highlight the frequency bands over which deep-

seated landslides tend to concentrate spectral power, we normalize

the landslide-generated spectra by their corresponding unfailed

surface-generated spectra (Fig. 7D–F, J–L). All six normalized spectra

produce well-defined peaks that indicate the characteristic wave-

lengths of deep-seated landslide features in similar substrates in each

study area. The peaks of the spectra indicate a characteristic

wavelength of ~22 m for the Dixie Mountain quadrangle and Seattle,

and ~32 m for marine Thurston County, with negligible differences in

peak location between the Fourier and wavelet spectra.

Because landslide features occur over a range of wavelengths in

both study areas, as indicated by both observation and Fig. 7, we take

the full width at half maximum (FWHM) of each peak as a

straightforward measure of the spectrum's spread and use this

characteristic band of spatial frequencies in our mapping algorithms.

For the Dixie Mountain quadrangle, the Fourier and wavelet spectra

indicate characteristic frequency bands of ~0.029 to 0.055 m−1

(wavelengths of ~18 to 34m) and of ~0.022 to 0.09m−1 (wavelengths

of ~11 to 45 m), respectively. For marine Thurston County, the

normalized Fourier spectrum indicates a characteristic frequency

Fig. 5. LiDAR-derived hillshade map of the NWD study area with independently mapped, deep-seated landslides (Madin and Niewendorp, 2008) shown in black, hatched pattern.

White boxes (A) and (B) indicate the patches of landslide and unfailed terrain, respectively, used to compute the normalized power spectra described in Section 3.3 and shown in

Fig. 7 for the NWD and DMQ study areas.
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band of ~0.020 to 0.048 m−1 (wavelengths of ~21 to 50 m), while

the normalizedwavelet spectrum indicates a band of frequencies from

~0.020 to 0.09 m−1 (wavelengths of ~11 to 50 m). In Seattle,

the normalized Fourier spectrum defines a characteristic frequency

band of ~0.030 to 0.053 m−1 (wavelengths of ~19 to 33 m), and

the normalized wavelet spectrum defines a band of frequencies from

~0.020 to 0.090 m−1 (wavelengths of ~11 to 50 m). At all three

sites, the FWHM is broader in the wavelet spectrum because each

wavelet scale consists of a range of frequencies. At small wavelet

scales in particular, theMexican hat wavelet becomesmore spread out

in the frequency domain, causing the right-hand sides of the wavelet

spectra in Fig. 7 to differ considerably from their analogous Fourier

spectra.

3.4. Mapping spectral power

In order to automatically map terrain with features indicative of

past deep-seated landslides, we map spatial patterns of spectral

power contained within the frequency bands determined from Fig. 7

using the transforms described in Sections 3.1 and 3.2.

3.4.1. Windowed 2D DFT

Tomap spatial patterns of spectral power with Fourier analysis, we

implement the 2D DFT in a windowed mode. The algorithm system-

atically works its way through the DEM computing the DFT period-

ogram using Eq. (2) within a square window centered on each node.

The values of the periodogram calculated at each node are then

summed over the characteristic frequency band, and this spectral

power sum is displayed in mapview for analysis. A node with a high

spectral power sum indicates a strong topographic signature of deep-

seated landsliding within the window surrounding that node.

For both study areas we use a 63-by-63 nodewindow, correspond-

ing to a 115-by-115 m square of terrain in the Puget Sound lowlands

(study areas MTC, CBP, and SEA) and a 58-by-58 m square of terrain in

the Dixie Mountain quadrangle (study areas DMQ and NWD). In a

window this size, the 2D DFT samples 64 evenly spaced frequencies

ranging from zero to (2Δ)−1, the Nyquist frequency, in both the x- and

y-directions, placing the frequencies of interest near the middle of the

spectrum. This choice of window size also represents a balance

between sampling enough frequencies to sufficiently describe the

terrain and keeping computation times reasonable.

Fig. 6. LiDAR-derived hillshade map of the CBP study areawith independently mapped, deep-seated landslides (M. Polenz, WA DNR, personal communication, 2008) shown in black,

hatched pattern. White boxes (A) and (B) indicate the patches of landslide and unfailed terrain, respectively, used to compute the power spectra described in Section 3.3 and shown

in Fig. 7 for the CBP and MTC study areas.
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3.4.2. 2D CWT

Becausewavelet analysis preserves information about both scale and

position, we implement Eq. (3) directly to map spatial patterns of

spectral power with the 2D CWT. We identify wavelet scales

corresponding to the minimum and maximum frequencies in each

study area's characteristic frequency band (Fig. 7J–L) and analyze only

integer wavelet scales between and including these bounds. This choice

of scales adequately encompasses the frequencies of interest in each

landscape while keeping computation times short. The algorithm first

computes awavelet coefficient at each node in the DEM at eachwavelet

scale. It then squares and sums the computed wavelet coefficients at

each node and displays the outcome in mapview. A node with a high

value indicates topography characteristic of a deep-seated landslide at

that node. Because the 2D CWT is not windowed as is our 2D DFT

algorithm,we smooth the output of our 2D CWTalgorithm by averaging

within a 63-node diameter window in order to produce comparable

maps that illustrate broad patterns of past deep-seated slope instability.

3.5. Optimizing algorithm outputs

The most straightforward way to translate an array produced by the

algorithms described in Sections 3.4.1 and 3.4.2 into a deep-seated

landslide map is to classify each node in the array as a landslide if its

spectral power sum is above a cutoff value or as an unfailed surface if its

value is below the cutoff. This approachdoes not delineate boundaries of

individual landslides that border or overlap each other, but instead

Fig. 7. Power spectra indicating the frequency bands characteristic of deep-seated landslides in the DMQ and NWD study areas (left-hand column), the MTC and CBP study areas

(center column), and the SEA study area (right-hand column). Fourier power spectra (A–C) show that spectral power tends to decrease with increasing frequency in both unfailed

and deep-seated landslide terrain. The peaks of the normalized Fourier spectra (D–F) highlight discrepancies in spectral power between deep-seated landslides and unfailed terrain,

indicating the range of frequencies over which deep-seated landslides tend to concentrate spectral power. Solid lines highlight the upper envelopes of the normalized spectra, and

dashed lines indicate the full width at half maximum (FWHM) for each spectrum. The wavelet power spectra (G–I) confirm that spectral power decreases with frequency, and the

peaks of the normalized wavelet spectra (J–L) also highlight the bands of frequencies over which deep-seated landslides concentrate spectral power. All patches of terrain were

normalized to have unit variance before computing spectral power.
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indicates all nodes in the study area that have the topographic signature

of deep-seated landsliding. The map resulting from a given cutoff value

can then be compared to the independently mapped deep-seated

landslides. Following Carrara et al. (1992), we select optimal cutoff

values for each study area based on the overall error index

E =
A1 [ A2ð Þ− A1 \ A2ð Þ

A1 [ A2ð Þ
; 0 V E V 1 ð6Þ

where A1 and A2 are the areas of landslides in the two maps being

compared, and ∪ and ∩ represent the geometric union and

intersection, respectively. The geometric union counts the total area

of deep-seated landslides identified by the landslide inventory or by

our algorithms, while the geometric intersection counts the total area

identified as a deep-seated landslide by both the inventory and our

algorithms. We compute E for each output array in each study area

over a range of cutoff values, and select the best algorithm-produced

landslide inventory map using the cutoff value that minimizes E.

Nodes that contain no data or are located within a body of water are

not included in our optimization routines.

4. Results

4.1. Landslide maps

Arrays produced by applying our 2D DFTand 2D CWTalgorithms to

the study areas clearly highlight variations in spectral power

contained in wavelengths characteristic of deep-seated landslides

across broad areas of terrain (Figs. 8A and B, 9A and B, and 10A and C).

Spectral power sums vary by orders of magnitude over each study

area, reflecting considerable variation in the topography. Areas that

are smooth over the range of spatial frequencies being analyzed

(Fig. 7) have low spectral power, while areas that are rough over this

frequency band have high spectral power. These areas of high spectral

power tend to coincidewithmapped deep-seated landslides, verifying

that a cutoff spectral power sum can delineate landslide terrain.

In our five study areas, selecting an optimal cutoff spectral power

sum by minimizing the error index correctly classifies an average of

82% of the land area as compared to the independently compiled

landslide inventories (Table 1). The minima of the error index curves

(Fig. 11) clearly indicate optimal cutoff spectral power sums for each

study area. To the left of the minimum in each error index curve, large

numbers of unfailed nodes are incorrectly classified as landslide

nodes, keeping E high. To the right of the minimum, E is again high,

but this time from landslide nodes being misclassified as unfailed

nodes. In the vicinity of the optimal cutoff values, the error index

curves are markedly lower in the Dixie Mountain quadrangle (DMQ

and NWD) than in the Puget Sound lowlands (MTC, CBP, and SEA)

because landslides occupy amajority of the area in the DixieMountain

quadrangle and only a small fraction of the area in the Puget Sound

lowland study areas. Defining the best cutoff value as the spectral

power sum that minimizes E produces visually appealing landslide

maps (Figs. 8C and D, 9C and D, and 10B and D) and correctly classifies

a high percentage of the land surface in our study areas (Table 1).

The error index curves shown in Fig. 11 and optimal cutoff values

shown in Table 1 also highlight how the sizes of our data sets affect the

optimal cutoff spectral power sums. Optimal cutoff values are similar

for MTC, SEA, and CBP and for DMQ and NWD, but tend to be higher in

the larger study areas. Our larger study areas tend to have higher

percentages of terrain mapped as unfailed, and this unfailed terrain

Fig. 8. Spectral power sums from the (A) 2D DFT and (B) 2D CWTand their corresponding optimally classified landslide maps (C and D) for the NWD study area. Warm colors (A and

B) indicate strong topographic signals of deep-seated landslide terrain, while shaded red areas (C and D) delineate landslide terrain based on the optimal cutoff values (Table 1).

Independently mapped deep-seated landslides (Madin and Niewendorp, 2008) are overlain in the black, hatched pattern. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

141A.M. Booth et al. / Geomorphology 109 (2009) 132–147



inevitably has some topographic features that our algorithms

interpret as deep-seated landslides, as discussed in the following

paragraphs. Higher cutoff spectral power sums reduce the number of

nodes in these large areas of unfailed terrain that are incorrectly

classified as landslide nodes.

Although the optimized landslide maps produced by our algo-

rithms succeed in mapping a large majority of the terrain in each

study area correctly, some systematic misclassifications occur. The

algorithms tend to falsely classify topographic features with sharp

edges or spatial frequencies in the characteristic landslide band as

landslide nodes. Conversely, the algorithms tend to overlook topo-

graphic features within the boundaries of known landslides that have

subdued amplitudes due to non-landslide erosive processes or human

modification of the landscape.

In our study areas, sharp-edged topographic features that tend to

be misclassified as deep-seated landslides include narrow valley

bottoms between landslide masses (north-central Fig. 8C and D),

ravines (SW corner of Fig. 9C and D), edges of steep bluffs lacking

deep-seated landslides (western Fig. 9C and D), and some roads

(small arrow, Fig. 10B and D). These sharp edges produce high spectral

power in Fourier analysis because large amplitude sine and cosine

waves over a range of frequencies are required to capture abrupt

Fig. 9. Spectral power sums from the (A) 2D DFTand (B) 2D CWTand their corresponding optimally classified landslide maps (C and D) for the CBP study area.Warm colors (A and B)

indicate strong topographic signals of deep-seated landslide terrain, while shaded red areas (C and D) delineate landslide terrain based on the optimal cutoff values (Table 1).

Independently mapped deep-seated landslides (M. Polenz, WA DNR, personal communication, 2008) are overlain in the black, hatched pattern. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Spectral power sums from the (A) 2D DFT and (C) 2D CWT and their corresponding optimally classified landslide maps (B and D) for the SEA study area. Warm colors (A and C) indicate strong topographic signals of deep-seated

landslide terrain, while shaded red areas (B and D) delineate landslide terrain based on the optimal cutoff values (Table 1). Independently mapped deep-seated landslides (Schulz, 2004, 2005, 2007) are overlain in the black, hatched pattern.

Small, black arrows (B and D) indicate the location of Interstate 5, which runs N–S through the study area and produces high spectral power sums because of its sharp edges. Grey, horizontal bars on the right-hand side of each image are areas

of no data because of gaps in the LiDAR coverage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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changes in the data being analyzed. Any window in our analysis that

contains an abrupt change in elevation therefore has an abnormally

high spectral power sum. Wavelet analysis with the Mexican hat

wavelet also tends to highlight sharp edges because of their high

curvature. The Mexican hat wavelet is the second derivative of a

Gaussian envelope, so convolving a data set with the Mexican hat is

akin to computing the data set's second derivative over a length scale

proportional to the wavelet scale (Lashermes et al., 2007).

Topographic features in our study areas with wavelengths in the

band characteristic of deep-seated landslides include some glacial

features of the Puget Sound lowlands (center of Fig. 9C and D) and

some fluvially dissected hillslopes in the Dixie Mountain quadrangle.

Because these features have large amplitudes over the same

wavelengths as deep-seated landslides, they produce high spectral

power sums that lead to misclassification as landslide terrain.

In both study areas, landslides have a range of ages and activity

levels, so the surfaces of different landslides have undergone

different degrees of post-failure modification. Diffusive soil trans-

port processes have likely subdued the topographic expression of

many of the older landslides, shifting spectral power to longer

wavelengths and making them difficult for our algorithms to detect.

For example, our algorithms fail to capture part of the interior of the

landslide mapped in the NE corner of Fig. 8C and D, and incorrectly

classify the broad patch of smooth topography mapped as an ancient

(M. Polenz, WA DNR, personal communication, 2008) deep-seated

landslide in the SE corner of Fig. 9C and D. Anthropogenic modifi-

cation of the landscape has also subdued many landslide morpho-

logic features in our study areas, especially in the Puget Sound

lowlands. Development within the mapped landslides on the slopes

adjacent to the inlet on the northern shore of the Carlyon Beach

peninsula (Fig. 9), for example, has likely removed many landslide

features, preventing our algorithms from matching the mapped

landslides in this area.

Despite these effects, our results show that automated landslide

mapping methods can produce landslide maps with high degrees of

precision in our study areas. The normalized spectra in Fig. 7 faithfully

indicate the characteristic wavelengths of landslide morphologic

features in similar substrates in each study area. The summed spectral

power containedwithin thesewavelengths quantifies the topographic

signature of deep-seated landsliding at each node in a data set,

allowing past deep-seated slope instability to be mapped.

4.2. Dominant wavelength map

In addition to analysis of broad spatial patterns, our methods allow

node-by-node analysis of specific topographic features through the

production of a dominant wavelength map. To produce the map, we

compute wavelet coefficients using Eq. (3) for each study area over a

range of wavelet scales and determine the mean wavelet coefficient

over the entire area at each scale. The wavelet coefficients are then

normalized by the mean at each scale, and the scale with the highest

normalized wavelet coefficient is mapped as the dominant spatial

scale at each node.

Fig. 12 shows the spatial distribution of dominant wavelength for

mapped landslides in the CBP study area. Variations in dominant

wavelength within the boundaries of these deep-seated landslides

clearly highlight differences in landslide style and geomorphic

processes. Most of the terrain within the historically active Carlyon

Beach landslide (Fig. 12A) has dominant wavelengths within the

characteristic band of ~11 to ~50 m indicated by our normalized

wavelet power spectrum (Fig. 7K). Very few nodes within the

landslide are dominated by very short or very long wavelengths,

illustrating the tendency of deep-seated landsliding to shift spectral

power to intermediate wavelengths. This may suggest that the initial

deep-seated movement of the landslide occurred recently enough

for its topographic signature to remain intact or that continued

activity of the landslide has maintained its characteristic topo-

graphic expression. Nodes with similar dominant wavelength values

Fig. 11. Error index curves used to select optimal cutoff spectral power sums for classifying each algorithm-generated array with the (A) 2D DFT and the (B) 2D CWT. We computed

E using 1500 logarithmically spaced cutoff values ranging from the minimum to maximum value in each array.

Table 1

Comparing algorithm-generated and independently compiled deep-seated landslide

maps in each study area.

Method Study area

MTC SEA CBP DMQ NWD

Cutoff value (m2) 2D DFT 2.86 1.88 0.65 0.33 0.22

2D CWT 2.6e+5 1.7e+5 5.9e+4 8.7e+3 5.3e+3

Error index 2D DFT 0.84 0.57 0.48 0.39 0.14

2D CWT 0.86 0.55 0.47 0.39 0.15

Percent correct (%) 2D DFT 88.8 87.1 81.3 68.3 87.0

2D CWT 86.1 87.8 80.5 67.8 86.0

Correctly classified

Landslide area (km2) 2D DFT 3.9 21.8 0.7 32.2 5.2

2D CWT 4.2 22.6 0.8 32.3 5.3

Unfailed area (km2) 2D DFT 152.8 163.2 2.1 11.9 0.7

2D CWT 147.7 163.2 2.0 11.4 0.6

Incorrectly classified

Landslide area (km2) 2D DFT 2.9 9.9 0.2 1.9 0.2

2D CWT 2.5 8.7 0.1 1.8 0.1

Unfailed area (km2) 2D DFT 16.9 17.6 0.5 18.5 0.7

2D CWT 22.0 17.1 0.5 19.0 0.8

Total area analyzed (km2) 2D DFT 176.4 212.5 3.5 64.5 6.8

2D CWT 176.4 211.1 3.5 64.5 6.8
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within the landslide also tend to form continuous bands perpendi-

cular to the local slope. These bands appear to reflect zones of tensile

failure and block rotations that result from downslope movement of

relatively coherent slide masses. These patterns in dominant

wavelength differ from patterns in a nearby ancient (M. Polenz,

WA DNR, personal communication, 2008) deep-seated landslide

(Fig. 12B). At that site, longer wavelengths tend to dominate

most nodes within the ancient landslide, marking a transition from

deep-seated landsliding to subsidiary geomorphic processes. Speci-

fically, diffusive soil transport processes appear to have reduced

the amplitude of short wavelength features, leaving only longer

wavelength expressions of past deep-seated landsliding, except

where the landslide has been partly reactivated (small arrow,

Fig. 12B). Also, fluvial processes acting in several channels have

begun to dissect the ancient landslide mass at a larger spatial scale.

Several of the long wavelength bands in the southern half of the

ancient landslide trend NNW while the shoreline trends NNE. This

likely reflects the dominant direction of fluvial transport and slope

modification across the ancient landslide surface or indicates that

large-scale blocks in the landslide failed in a direction not

perpendicular to the modern shoreline, perhaps due to directed

coastal erosion.

5. Discussion

Amajor strength of our automated deep-seated landslide mapping

methods is that they work well in both rural and urban parts of our

study areas. Although roads, grading, and other human modifications

of the landscape do cause somemisclassifications, manymodifications

do not completely erase the topographic signatures of deep-seated

landslides. Anthropogenic topographic features often have higher

spatial frequencies than deep-seated landslides in our study areas and

therefore do not influence spectral power over our characteristic

frequency bands. This filtering of unwanted wavelengths from the

dataworks particularly well in Seattle, where nearly every node in the

data has been modified by human activity, but our automated

methods still classify 87% of the nodes correctly.

Error indices and percentages of correctly classified terrain both

provide measures of how well our automatically generated maps

match independently compiled, deep-seated landslide maps, but low

error indices and high percentages of correctly mapped terrain do not

always correlate. For example, we match the highest percentage of

nodes, but also have the highest error index in MTC compared to our

other study areas. In DMQ, we have the lowest error index, but also the

lowest percentage of nodes classified correctly. These discrepancies

result from differences in the abundances of deep-seated landslides in

our study areas. To illustrate, we rewrite Eq. (6) as

E = 1−
Cls

Als + Ils
ð7Þ

where Cls is the area of correctly identified landslide nodes, Als is the

total area of mapped landslide nodes, and Ils is the area of incorrectly

classified landslide nodes. In our data sets where Als is a high

percentage of the total area (DMQ and NWD), Cls can approach Als

while Ils remains low because very little land area exists to be

classified as Ils. On the other hand, when Als is only a small percentage

of the total area (MTC, SEA, and CBP), Ils has the potential to become

quite high as Cls approaches Als simply because a large area of unfailed

terrain exists. The former case tends to allow the ratio in Eq. (7) to

approach 1, leading to a low E, while the latter case tends to keep the

ratio small, leading to a high E. These discrepancies between error

index and percentage of correctly classified nodes suggest that close

visual inspection of maps may be required in addition to statistical

measures to thoroughly evaluate the quality of the match between

different landslide inventory maps of the same study area.

Our windowed 2D DFT and 2D CWT algorithms perform compar-

ably to one another in each study area, but the 2D CWT shows more

promise in future applications for several reasons. Most importantly,

the 2D CWT applied to topographic data preserves information about

position in addition to frequency, so it is more suited to visualization

of spatial patterns of spectral power. Inspection of a study area's

wavelet coefficients and dominant wavelengthmap allows both node-

Fig. 12. Dominant wavelength map for deep-seated landslides in study area CBP.

Warmer colors indicate longer dominant wavelengths. Recently active landslides

(A) tend to have dominant wavelengths in agreement with the FWHM of the power

spectra for the CBP study area (Fig. 7K). Ancient (M. Polenz, WA DNR, personal

communication, 2008) landslides (B) have longer dominant wavelengths, marking a

transition from deep-seated landslide processes to other geomorphic processes. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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by-node analysis of specific morphologic features and investigation of

broad spatial patterns. We chose the Mexican hat wavelet for our

study because of its resemblance to a landslide hummock, but

numerous other families of wavelets exist that may be better suited

to different study areas or to extracting different topographic features.

Lastly, the choice of wavelet scales is flexible in nonorthogonal

wavelet analysis (Torrence and Compo, 1998), so as few or as many

scales as needed can be analyzed, depending on the particular

application. This differs from orthogonal wavelet analysis, which

samples only discrete scale and location parameters (Torrence and

Compo, 1998). For the automated mapping presented here, after

identifying characteristic wavelengths of deep-seated landslides, we

needed only 5 to 7 wavelet scales to map topographic features asso-

ciated with landslides. This required far less computation time than

our windowed Fourier analysis.

Automated landslidemappingmethods such as thosedescribed here

may never completely replace traditional methods of topographic map

inspection, aerial photograph interpretation, and fieldwork. In particu-

lar, because our automated methods rely entirely upon morphologic

expressions as recorded by topographic data, they often do not capture

the boundaries between neighboring and overlapping landslides and

are insensitive to the details of subsurface geology. However, as high-

resolution topographic data become increasingly available, our auto-

mated methods will provide effective, objective, and efficient tools that

can supplement traditional methods. Our methods quantify and more

objectively locate the same topographic features used tomap landslides

with visual inspection of photographs, maps, or high-resolution data,

producing results that can serve as a starting point for a more detailed

landslide inventory map in a fraction of the time required for a manual

survey.

6. Conclusions

Landslide inventory maps provide valuable information to a

variety of policy makers and scientists, but their creation remains a

time consuming and subjective task. The increasing availability of

high-resolution LiDAR-derived DEMs provides new opportunities for

improving the efficiency and objectivity of mapping spatial and

temporal patterns of slope instability. However, few studies to date

have capitalized on LiDAR-derived DEMs to investigate landsliding at

meter-scale resolutions over kilometer-scale swaths of terrain.

We have described two signal processing techniques that can be

used to quantify the morphologic expressions of deep-seated land-

slides using high-resolution topographic data and to map how these

expressions vary spatially. Power spectra produced by two-dimen-

sional Fourier and wavelet analyses define the characteristic wave-

lengths of landslide features in the Puget Sound lowlands,

Washington, and the Tualatin Mountains, Oregon. Spectral power

summed over a characteristic band of wavelengths provides a

measure of the strength of the topographic signature of deep-seated

landsliding at any point in a data set. Examining the spectral power

sum at each node in mapview highlights patterns of past slope

instability over study areas up to hundreds of square kilometers in

extent.

To test how well these methods can delineate terrain that has

undergone past deep-seated landsliding, we compared the outputs of

our algorithms to independently created landslide inventory maps in

each study area. We classified the algorithm-generated arrays so as to

minimize the error index of the array compared to its corresponding

landslide map. Assuming the landslide inventory maps recorded all

landslides in each study area, our algorithms were able to match an

average of 82% of the area in our five study areas. These results

indicate that the 2D DFT and 2D CWT are capable of producing

accurate deep-seated landslide maps in our study areas. Although we

do not see automated methods replacing traditional landslide

mapping methods, we propose that they can improve the objectivity

of landslide mapping and decrease the time needed to compile

landslide inventory maps.

Lastly, we created a dominant wavelength map to investigate the

relationship between geomorphic processes and their topographic

expressions. Spatial variations in dominant wavelength within deep-

seated landslides highlight how deep-seated landsliding concentrates

spectral power over intermediate wavelengths by dissecting the

landscape into blocks and by forming hummocks of a particular

spatial scale. Diffusive soil transport shifts spectral power to longer

dominant wavelengths, while fluvial incision also dissects the surfaces

of inactive deep-seated landslides at longer spatial scales. We suggest

that dominant wavelength maps may be a useful tool for analyzing

the topographic expressions of a suite of geomorphic processes over a

wide range of scales.

Acknowledgements

Thank you to H. Kelsey for an insightful review that helped

improve the depth of this contribution. This workwas supported by an

NSF Graduate Research Fellowship to AMB, NSF Award EAR-0447190

to JJR, an R.A. Daly Postdoctoral Fellowship to JTP, and the University of

Oregon Department of Geological Sciences.

References

Addison, P.S., 2002. The Illustrated Wavelet Handbook: Introductory Theory and
Applications in Science, Engineering, Medicine and Finance. Institute of Physics
Publishing, Bristol, UK.

Armstrong, J.E., Crandell, D.R., Easterbrook, D.J., Noble, J.B., 1965. Late Pleistocene
stratigraphy and chronology in southwestern British Columbia and northwestern
Washington. GSA Bulletin 76, 321–330.

Beeson, M.H., Tolan, T.L., Madin, I.P., 1989. GeologicMap of the Lake Oswego Quadrangle,
Clackamas, Multnomah andWashington Counties, Oregon. Geologic Map Series 59,
Oregon Department of Geology and Mineral Industries, Portland, OR.

Beeson, M.H., Tolan, T.L., Madin, I.P., 1991. Geologic Map of the Portland Quadrangle,
Multnomah and Washington Counties, Oregon. Geologic Map Series 75, Oregon
Department of Geology and Mineral Industries, Portland, OR.

Booth, D.B., 1987. Timing and processes of deglaciation along the southernmargin of the
Cordilleran ice sheet. In: Ruddiman, W.F., WrightJr. Jr., H.E. (Eds.), North America
and Adjacent Oceans During the Last Deglaciation; The Geology of North America,
K-3. Geological Society of America, Boulder, CO, pp. 71–90.

Carrara, A., Cardinali, M., Guzzetti, F., 1992. Uncertainty in assessing landslide hazard
and risk. ITC Journal 2, 172–183.

Chadwick, J., Glenn, N., Thackray, G., Dorsch, S., 2005. Landslide surveillance: new tools
for an old problem. Eos 86 (11), 109–114.

Cruden, D.M., Varnes, D.J., 1996. Landslide types and processes. In: Turner, A.K.,
Schuster, R.L. (Eds.), Landslides Investigation and Mitigation. National Academy
Press, Washington, DC, pp. 36–75.

Galli,M.,Ardizzone, F., Cardinali,M.,Guzzetti, F., Reichenbach, P., 2008. Comparing landslide
inventory maps. Geomorphology 94, 268–289. doi:10.1016/j.geomorph.2006.09.023.

Galster, R.W., Laprade, W.T., 1991. Geology of Seattle, Washington, United States of
America. Bulletin of the Association of Engineering Geologists 28 (3), 235–302.

Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., Dorsch, S.J., 2006. Analysis of
LiDAR-derived topographic information for characterizing and differentiating
landslide morphology and activity. Geomorphology 73, 131–148.

Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard
evaluation: a review of current techniques and their application in a multi-scale
study, Central Italy. Geomorphology 31, 181–216.

Guzzetti, F., Cardinali, M., Reichenbach, P., Carrarra, A., 2000. Comparing landslide
maps: a case study in the upper Tiber River basin, central Italy. Environmental
Management 25 (3), 247–263. doi:10.1007/s002679910020.

Hanley, J.T., 1977. Fourier analysis of the Catawba Mountain knolls, Roanoke County,
Virginia. Mathematical Geology 9 (2), 159–163.

Harrison, J.M., Lo, C.P., 1996. PC-based two-dimensional discrete Fourier transform
programs for terrain analysis. Computers and Geosciences 22 (4), 419–424.

Haugerud, R.A., Harding, D.J., Johnson, S.Y., Harless, J.L., Weaver, C.S., Sherrod, B.L., 2003.
High resolution Lidar topography of the Puget Lowland, Washington — a bonanza
for earth science. GSA Today 13 (6), 9.

Hovius, N., Stark, C.P., Allen, P.A., 1997. Sediment flux from a mountain belt derived by
landslide mapping. Geology 25 (3), 231–234.

Hovius, N., Stark, C.P.,Hao-Tsu, C., Jiun-Chuan, L., 2000. Supplyand removal of sediment in a
landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology 108,
73–89.

Jordan, G., Schott, B., 2005. Application of wavelet analysis to the study of spatial pattern
of morphotectonic lineaments in digital terrain models. A case study. Remote
Sensing of the Environment 94, 31–38.

Kumar, P., Foufoula-Georgiou, E., 1994. Wavelet analysis in geophysics: an introduction.
In: Foufoula-Georgiou, E., Kumar, P. (Eds.), Wavelets in Geophysics. Academic Press,
San Diego, CA, pp. 1–44.

146 A.M. Booth et al. / Geomorphology 109 (2009) 132–147

http://dx.doi.org/10.1016/j.geomorph.2006.09.023
http://dx.doi.org/10.1007/s002679910020


Kumar, P., Foufoula-Georgiou, E., 1997. Wavelet analysis for geophysical applications.
Reviews of Geophysics 35 (4), 385–412.

Lashermes, B., Foufoula-Georgiou, E., Dietrich, W.E., 2007. Channel network extraction
from high resolution topography using wavelets. Geophysical Research Letters 34,
L23S04. doi:10.1029/2007GL031140.

Madin, I.P., Niewendorp, C.A., 2008. Preliminary Geologic Map of the Dixie Mountain
Quadrangle, Washington, Multnomah and Columbia Counties, Oregon. Open-File
Report O-08-07, Oregon Department of Geology andMineral Industries, Portland, OR.

Malamud, B.D., Turcotte, D.L., 2001. Wavelet analyses of Mars polar topography. Journal
of Geophysical Research 106 (8), 17497–17504.

Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004a. Landslide inventories
and their statistical properties. Earth Surface Processes and Landforms 29, 687–711.
doi:10.1002/esp.1064.

Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004b. Landslides,
earthquakes, and erosion. Earth and Planetary Science Letters 229, 45–59.

McKean, J., Roering, J., 2004. Objective landslide detection and surface morphology
mapping using high-resolution airborne laser altimetry. Geomorphology 57, 331–351.

McKean, J.A., Isaak, D.J., Wright, C.W., 2008. Geomorphic controls on salmon nesting
patterns described by a new, narrow-beam terrestrial-aquatic lidar. Frontiers in
Ecology and the Environment 6. doi:10.1890/070109.

Nilsen, T.H., Brabb, E.E., 1977. Slope stability studies in the San Francisco Bay region,
California. Geological Society of America, Reviews in Engineering Geology 3, 235–243.

Nilsen, T.H., Wright, F.H., Vlasic, C., Spangle, W.E., 1979. Relative slope stability and land-
use planning in the San Francisco Bay region, California. U.S. Geological Survey
Professional Paper 944. 104 pp.

Percival, D.P., 1995. On estimation of the wavelet variance. Biometrika 82, 619–631.
Perron, J.T., Kirchner, J.W., Dietrich, W.E., 2008. Spectral signatures of characteristic

spatial scales and nonfractal structure in landscapes. Journal of Geophysical
Research 113, F04003. doi:10.1029/2007JF000866.

Priestley, M.B., 1981. Spectral Analysis and Time Series. Academic Press, New York.
Rayner, J.N., 1972. The application of harmonic and spectral analysis to the study of

terrain. In: Chorley, R.J. (Ed.), Spatial Analysis in Geomorphology. Methuen, London,
pp. 283–302.

Roering, J.J., Kirchner, J.W., Dietrich, W.E., 2005. Characterizing structural and lithologic
controls on deep-seated landsliding: implications for topographic relief and
landscape evolution in the Oregon Coast Range, USA. GSA Bulletin 117, 654–668.
doi:10.1130/B25567.1.

Schulz, W.H., 2004. Landslides Mapped Using LIDAR Imagery, Seattle, Washington.
Open-File Report 2004-1396, U.S. Geological Survey, Reston, VA, 11 pp, 1 plate.

Schulz, W.H., 2005. Landslide Susceptibility Estimated from Mapping Using Light
Detection and Ranging (LIDAR) Imagery and Historical Landslide Records,
Seattle, Washington. Open-File Report 2005-1405, U.S. Geological Survey, Reston,
VA, 16 pp, 1 plate.

Schulz, W.H., 2007. Landslide susceptibility revealed by LIDAR imagery and historical
records, Seattle, Washington. Engineering Geology 89, 67–87.

Slatton, K.C., Carter, W.E., Shrestha, R.L., Dietrich, W., 2007. Airborne laser swath
mapping: achieving the resolution and accuracy required for geosurficial research.
Geophysical Research Letters 34, L23S10. doi:10.1029/2007GL031939.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the
American Meteorological Society 79 (1), 61–78.

Trimble, D.E., 1963. Geology of Portland, Oregon and adjacent areas. Bulletin 1119, U.S.
Geological Survey, Washington, DC, 119 pp.

Tubbs, D.W., 1974. Landslides in Seattle. Washington Division of Geology and Earth
Resources Information Circular 52, 15 pp., 1 plate.

Tubbs, D.W., 1975. Causes, mechanisms and prediction of landsliding in Seattle. Seattle,
University of Washington, Ph.D. dissertation, 89 pp., 1 plate.

Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J.,
van Beek, L.P.H., 2005. The effectiveness of hillshade maps and expert knowledge in
mapping old deep-seated landslides. Geomorphology 67, 351–363.

Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J.,
van Beek, L.P.H., Vandekerckhove, L., 2007a. Use of LIDAR-derived images for
mapping old landslides under forest. Earth Surface Processes and Landforms 32,
754–769.

Van Den Eeckhaut, M., Verstraeten, G., Poesen, J., 2007b. Morphology and internal
structure of a dormant landslide in a hilly area: the Collinabos landslide (Belgium).
Geomorphology 89, 258–273.

Wieczorek, G.F., 1984. Preparing a detailed landslide-inventory map for hazard evaluation
and reduction. Bulletin of the Association of Engineering Geologists 21 (3), 337–342.

Wills, C.J., McCrink, T.P., 2002. Comparing landslide inventories, the map depends on
the method. Environmental and Engineering Geoscience 8, 279–293.

147A.M. Booth et al. / Geomorphology 109 (2009) 132–147

http://dx.doi.org/10.1029/2007GL031140
http://dx.doi.org/10.1002/esp.1064
http://dx.doi.org/10.1890/070109
http://dx.doi.org/10.1029/2007JF000866
http://dx.doi.org/10.1130/B25567.1
http://dx.doi.org/10.1029/2007GL031939


S
e
a
tt

le

M
a
ri

n
e
 

T
h

u
rs

to
n

C
o

u
n

ty

D
ix

ie
 M

o
u

n
ta

in
 

Q
u

a
d

ra
n

g
le

P
o

rt
la

n
d

1
0
 k

m



2
D

 D
F

T
2
D

 C
W

T

e
x
p
(-

2
)

e
x
p
(1

6
)

e
x
p
(-

2
0
)

e
x
p
(8

)

(A
)

(B
)

(C
)

(D
)

5
 k

m


	Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget.....
	Introduction
	Study areas
	Tualatin Mountains, Oregon
	Puget Sound lowlands, Washington

	Methods
	2D DFT
	2D CWT
	Fourier and wavelet spectra
	Mapping spectral power
	Windowed 2D DFT
	2D CWT

	Optimizing algorithm outputs

	Results
	Landslide maps
	Dominant wavelength map

	Discussion
	Conclusions
	Acknowledgements
	References


